Make One-Shot Video Object Segmentation Efficient Again

被引:0
作者
Meinhardt, Tim [1 ]
Leal-Taixe, Laura [1 ]
机构
[1] Tech Univ Munich, Munich, Germany
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020 | 2020年 / 33卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video object segmentation (VOS) describes the task of segmenting a set of objects in each frame of a video. In the semi-supervised setting, the first mask of each object is provided at test time. Following the one-shot principle, fine-tuning VOS methods train a segmentation model separately on each given object mask. However, recently the VOS community has deemed such a test time optimization and its impact on the test runtime as unfeasible. To mitigate the inefficiencies of previous fine-tuning approaches, we present efficient One-Shot Video Object Segmentation (e-OSVOS). In contrast to most VOS approaches, e-OSVOS decouples the object detection task and predicts only local segmentation masks by applying a modified version of Mask R-CNN. The one-shot test runtime and performance are optimized without a laborious and handcrafted hyperparameter search. To this end, we meta learn the model initialization and learning rates for the test time optimization. To achieve an optimal learning behavior, we predict individual learning rates at a neuron level. Furthermore, we apply an online adaptation to address the common performance degradation throughout a sequence by continuously fine-tuning the model on previous mask predictions supported by a frame-to-frame bounding box propagation. e-OSVOS provides state-of-the-art results on DAVIS 2016, DAVIS 2017 and YouTube-VOS for one-shot fine-tuning methods while reducing the test runtime substantially. Code is available at https://github.com/dvl-tum/e-osvos.
引用
收藏
页数:13
相关论文
共 46 条
[1]  
[Anonymous], IEEE CONF ON COMPUTE
[2]  
[Anonymous], PROC CVPR IEEE
[3]  
[Anonymous], 2019, CVPR, DOI DOI 10.1109/CVPR.2019.00971
[4]  
Antoniou A, 2019, INT C LEARN REPR, DOI DOI 10.1145/3351556.3351574
[5]   CNN in MRF: Video Object Segmentation via Inference in A CNN-Based Higher-Order Spatio-Temporal MRF [J].
Bao, Linchao ;
Wu, Baoyuan ;
Liu, Wei .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :5977-5986
[6]  
Behl Harkirat Singh, 2018, EURIPS 2019 WORKSHO
[7]   Tracking without bells and whistles [J].
Bergmann, Philipp ;
Meinhardt, Tim ;
Leal-Taixe, Laura .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :941-951
[8]   The Lovasz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks [J].
Berman, Maxim ;
Triki, Amal Rannen ;
Blaschko, Matthew B. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4413-4421
[9]   One-Shot Video Object Segmentation [J].
Caelles, S. ;
Maninis, K. -K. ;
Pont-Tuset, J. ;
Leal-Taixe, L. ;
Cremers, D. ;
Van Gool, L. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5320-5329
[10]   Blazingly Fast Video Object Segmentation with Pixel-Wise Metric Learning [J].
Chen, Yuhua ;
Pont-Tuset, Jordi ;
Montes, Alberto ;
Van Gool, Luc .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1189-1198