High-yield porphyrin production through metabolic engineering and biocatalysis

被引:17
作者
Chen, Haihong [1 ]
Wang, Yaohong [1 ]
Wang, Weishan [2 ]
Cao, Ting [1 ]
Zhang, Lu [1 ]
Wang, Zhengduo [1 ]
Chi, Xuran [1 ]
Shi, Tong [1 ]
Wang, Huangwei [1 ]
He, Xinwei [1 ]
Liang, Mindong [1 ]
Yang, Mengxue [1 ]
Jiang, Wenyi [1 ]
Lv, Dongyuan [1 ]
Yu, Jiaming [1 ]
Zhu, Guoliang [1 ]
Xie, Yongtao [1 ]
Gao, Bei [1 ]
Wang, Xinye [1 ]
Liu, Xueting [1 ]
Li, Youyuan [1 ]
Ouyang, Limin [1 ]
Zhang, Jingyu [1 ]
Liu, Huimin [1 ]
Li, Zilong [2 ]
Tong, Yaojun [3 ]
Xia, Xuekui [4 ]
Tan, Gao-Yi [1 ]
Zhang, Lixin [1 ]
机构
[1] East China Univ Sci & Technol, Sch Biotechnol, State Key Lab Bioreactor Engn, Shanghai, Peoples R China
[2] Chinese Acad Sci, Inst Microbiol, State Key Lab Microbial Resources, Beijing, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, State Key Lab Microbial Metab, Shanghai, Peoples R China
[4] Qilu Univ Technol, Shandong Acad Sci, Biol Inst, Key Biosensor Lab Shandong Prov, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
PHOTOSYNTHESIS GENE-EXPRESSION; COENZYME Q(10) PRODUCTION; ZINC-COPROPORPHYRIN-III; HIGH-LEVEL PRODUCTION; RHODOBACTER-SPHAEROIDES; PHOTODYNAMIC THERAPY; HYDROGEN-PRODUCTION; ESCHERICHIA-COLI; FREE HEME; PATHWAY;
D O I
10.1038/s41587-024-02267-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Porphyrins and their derivatives find extensive applications in medicine, food, energy and materials. In this study, we produced porphyrin compounds by combining Rhodobacter sphaeroides as an efficient cell factory with enzymatic catalysis. Genome-wide CRISPRi-based screening in R. sphaeroides identifies hemN as a target for improved coproporphyrin III (CPIII) production, and exploiting phosphorylation of PrrA further improves the production of bioactive CPIII to 16.5 g L-1 by fed-batch fermentation. Subsequent screening and engineering high-activity metal chelatases and coproheme decarboxylase results in the synthesis of various metalloporphyrins, including heme and the anti-tumor agent zincphyrin. After pilot-scale fermentation (200 L) and setting up the purification process for CPIII (purity >95%), we scaled up the production of heme and zincphyrin through enzymatic catalysis in a 5-L bioreactor, with CPIII achieving respective enzyme conversion rates of 63% and 98% and yielding 10.8 g L-1 and 21.3 g L-1, respectively. Our strategy offers a solution for high-yield bioproduction of heme and other valuable porphyrins with substantial industrial and medical applications.
引用
收藏
页数:27
相关论文
共 74 条
[1]   Molecular hijacking of siroheme for the synthesis of heme and d1 heme [J].
Bali, Shilpa ;
Lawrence, Andrew D. ;
Lobo, Susana A. ;
Saraiva, Ligia M. ;
Golding, Bernard T. ;
Palmer, David J. ;
Howard, Mark J. ;
Ferguson, Stuart J. ;
Warren, Martin J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (45) :18260-18265
[2]   Eradication of high-grade dysplasia in columnar-lined (Barrett's) oesophagus by photodynamic therapy with endogenously generated protoporphyrin IX [J].
Barr, H ;
Shepherd, NA ;
Dix, A ;
Roberts, DJH ;
Tan, WC ;
Krasner, N .
LANCET, 1996, 348 (9027) :584-585
[3]   Structure-Based Mechanism for Oxidative Decarboxylation Reactions Mediated by Amino Acids and Heme Propionates in Coproheme Decarboxylase (HemQ) [J].
Celis, Arianna I. ;
Gauss, George H. ;
Streit, Bennett R. ;
Shisler, Krista ;
Moraski, Garrett C. ;
Rodgers, Kenton R. ;
Lukat-Rodgers, Gudrun S. ;
Peters, John W. ;
DuBois, Jennifer L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (05) :1900-1911
[4]   Complete enzyme set for chlorophyll biosynthesis in Escherichia coli [J].
Chen, Guangyu E. ;
Canniffe, Daniel P. ;
Barnett, Samuel F. H. ;
Hollingshead, Sarah ;
Brindley, Amanda A. ;
Vasilev, Cvetelin ;
Bryant, Donald A. ;
Hunter, C. Neil .
SCIENCE ADVANCES, 2018, 4 (01)
[5]   CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity [J].
Chen, Janice S. ;
Ma, Enbo ;
Harrington, Lucas B. ;
Da Costa, Maria ;
Tian, Xinran ;
Palefsky, Joel M. ;
Doudna, Jennifer A. .
SCIENCE, 2018, 360 (6387) :436-+
[6]   Production of zinc protoporphyrin IX by metabolically engineered Escherichia coli [J].
Choi, Kyeong Rok ;
Yu, Hye Eun ;
Lee, Sang Yup .
BIOTECHNOLOGY AND BIOENGINEERING, 2022, 119 (11) :3319-3325
[7]   Improved production of heme using metabolically engineered Escherichia coli [J].
Choi, Kyeong Rok ;
Yu, Hye Eun ;
Lee, Hoseong ;
Lee, Sang Yup .
BIOTECHNOLOGY AND BIOENGINEERING, 2022, 119 (11) :3178-3193
[8]   Coproporphyrin III Produced by the Bacterium Glutamicibacter arilaitensis Binds Zinc and Is Upregulated by Fungi in Cheese Rinds [J].
Cleary, Jessica L. ;
Kolachina, Shilpa ;
Wolfe, Benjamin E. ;
Sanchez, Laura M. .
MSYSTEMS, 2018, 3 (04)
[9]   Differential gene content and gene expression for bacterial evolution and speciation of Shewanella in terms of biosynthesis of heme and heme-requiring proteins [J].
Dai, Jingcheng ;
Liu, Yaqi ;
Liu, Shuangyuan ;
Li, Shuyang ;
Gao, Na ;
Wang, Jing ;
Zhou, Jizhong ;
Qiu, Dongru .
BMC MICROBIOLOGY, 2019, 19 (1)
[10]   Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product [J].
Dailey, Harry A. ;
Dailey, Tamara A. ;
Gerdes, Svetlana ;
Jahn, Dieter ;
Jahn, Martina ;
O'Brian, Mark R. ;
Warren, Martin J. .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2017, 81 (01)