Simulation and Analysis of Molybdenum Tungsten Impact on Capacitive MEMS Pressure Sensor

被引:2
作者
Belgroune, Nadir [1 ]
Ahmed, Mohammad Zayed [2 ]
Sayah, Mohamed [3 ]
Bouamra, Faiza [1 ]
Souissi, Meriem [1 ]
Guittoum, Abderrahim [4 ]
机构
[1] Blida 1 Univ Saad Dahlab, Phys Dept, LPCMIA Lab, Blida 09000, Algeria
[2] Al Hussein Bin Talal Univ, Elect Engn Dept, Maan, Jordan
[3] Oran 1 Univ, LITIO Lab, Comp Sci, Oran 31000, Algeria
[4] Nucl Res Ctr Algiers, Mat Phys Dept, Div Phys, NRCA, Algiers 16000, Algeria
关键词
FEM simulation; MEMS sensors; Capacitive pressure sensor; Thermal property analysis; HIGH-SENSITIVITY; DESIGN;
D O I
10.1007/s13369-024-08938-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper utilizes COMSOL software to conduct comprehensive simulations and analyses to evaluate the Micro-Electro-Mechanical System (MEMS) capacitive pressure sensor's performance with and without packaging. The study evaluates the influence of the compatibility of material physical properties, focusing on molybdenum and tungsten. The evaluation parameters include linearity, capacitance sensitivity, and resilience to temperature variations. Molybdenum and tungsten demonstrate promising results, exhibiting high linearity with a nonlinear correlation factor of 0.9999 with packaging and 0.9984 without packaging in the 0-20 kPa pressure range, without the need for mechanical or electrical compensations. The molybdenum-tungsten sensor has exceptional resistance to capacitance variations, with only a 0.08511 pF alteration across a 263-773 K temperature span. To validate these findings, a case study has been incorporated to confirm the impact of matching and a high Young's modulus in attaining linearity. These discoveries highlight the potential of capacitive MEMS pressure sensors based on molybdenum and tungsten for consistent and stable performance in various operating conditions.
引用
收藏
页码:453 / 466
页数:14
相关论文
共 56 条
  • [1] Al Amin R., 2015, ICM ELECT INFORM ENG
  • [2] Amith V., 2016, INT J INNOV RES SCI, V5, P8407
  • [3] Anadkat N., 2015, INT J ENG RES TECHNO, V4, P848, DOI DOI 10.17577/IJERTV4IS041064
  • [4] Ananthi S., 2021, FLEXIBLE ELECT ELECT, P151
  • [5] Belgroune N., 2022, 1 INT C COMP APPL PH, P25
  • [6] Bhat K., 2013, J ISSS, V1, P39
  • [7] Bouamra F., 2023, ICCAP 2023
  • [8] Wearable piezoresistive pressure sensors based on 3D graphene
    Cao, Minghui
    Su, Jie
    Fan, Shuangqing
    Qiu, Hengwei
    Su, Dongliang
    Li, Le
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 406
  • [9] An All-Silicon Resonant Pressure Microsensor Based on Eutectic Bonding
    Chen, Siyuan
    Qin, Jiaxin
    Lu, Yulan
    Xie, Bo
    Wang, Junbo
    Chen, Deyong
    Chen, Jian
    [J]. MICROMACHINES, 2023, 14 (02)
  • [10] Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity
    Cho, Sung Hwan
    Lee, Seung Won
    Yu, Seunggun
    Kim, Hyeohn
    Chang, Sooho
    Kang, Donyoung
    Hwang, Ihn
    Kang, Han Sol
    Jeong, Beomjin
    Kim, Eui Hyuk
    Cho, Suk Man
    Kim, Kang Lib
    Lee, Hyungsuk
    Shim, Wooyoung
    Park, Cheolmin
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (11) : 10128 - 10135