Modelling bridge deterioration using long short-term memory neural networks: a deep learning-based approach

被引:1
|
作者
Dabous, Saleh Abu [1 ]
Ibrahim, Fakhariya [2 ]
Alzghoul, Ahmad [3 ]
机构
[1] Univ Sharjah, Dept Civil & Environm Engn, Sharjah, U Arab Emirates
[2] Univ Sharjah, Sustainable Engn Asset Management Res Grp, Sharjah, U Arab Emirates
[3] Princess Sumaya Univ Technol, Data Sci Dept, Amman, Jordan
关键词
Bridge management system (BMS); Bridges; Deterioration; Condition monitoring; Artificial intelligence (AI); Deep learning; Long short-term memory (LSTM); Neural networks; CONCRETE BRIDGES; GRADIENT PROBLEM; PREDICTION; INFRASTRUCTURE; INSPECTION; LIFE; OPTIMIZATION; MAINTENANCE; MANAGEMENT; DECKS;
D O I
10.1108/SASBE-10-2023-0295
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
PurposeBridge deterioration is a critical risk to public safety, which mandates regular inspection and maintenance to ensure sustainable transport services. Many models have been developed to aid in understanding deterioration patterns and in planning maintenance actions and fund allocation. This study aims at developing a deep-learning model to predict the deterioration of concrete bridge decks.Design/methodology/approachThree long short-term memory (LSTM) models are formulated to predict the condition rating of bridge decks, namely vanilla LSTM (vLSTM), stacked LSTM (sLSTM), and convolutional neural networks combined with LSTM (CNN-LSTM). The models are developed by utilising the National Bridge Inventory (NBI) datasets spanning from 2001 to 2019 to predict the deck condition ratings in 2021.FindingsResults reveal that all three models have accuracies of 90% and above, with mean squared errors (MSE) between 0.81 and 0.103. Moreover, CNN-LSTM has the best performance, achieving an accuracy of 93%, coefficient of correlation of 0.91, R2 value of 0.83, and MSE of 0.081.Research limitations/implicationsThe study used the NBI bridge inventory databases to develop the bridge deterioration models. Future studies can extend the model to other bridge databases and other applications in the construction industry.Originality/valueThis study provides a detailed and extensive data cleansing process to address the shortcomings in the NBI database. This research presents a framework for implementing artificial intelligence-based models to enhance maintenance planning and a guideline for utilising the NBI or other bridge inventory databases to develop accurate bridge deterioration models. Future studies can extend the model to other bridge databases and other applications in the construction industry.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Deep Learning-Based Glaucoma Detection Using Clinical Notes: A Comparative Study of Long Short-Term Memory and Convolutional Neural Network Models
    Mohammadjafari, Ali
    Lin, Maohua
    Shi, Min
    DIAGNOSTICS, 2025, 15 (07)
  • [22] Novel volatility forecasting using deep learning-Long Short Term Memory Recurrent Neural Networks
    Liu, Yang
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 132 : 99 - 109
  • [23] Gas turbine availability improvement based on long short-term memory networks using deep learning of their failures data analysis
    Djeddi, Ahmed Zohair
    Hafaifa, Ahmed
    Hadroug, Nadji
    Iratni, Abdelhamid
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 159 : 1 - 25
  • [24] Deep Graph-Long Short-Term Memory: A Deep Learning Based Approach for Text Classification
    Varsha Mittal
    Duraprasad Gangodkar
    Bhaskar Pant
    Wireless Personal Communications, 2021, 119 : 2287 - 2301
  • [25] Deep Graph-Long Short-Term Memory: A Deep Learning Based Approach for Text Classification
    Mittal, Varsha
    Gangodkar, Duraprasad
    Pant, Bhaskar
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 119 (03) : 2287 - 2301
  • [26] Deep Learning Prognostics for Lithium-Ion Battery Based on Ensembled Long Short-Term Memory Networks
    Liu, Yuefeng
    Zhao, Guangquan
    Peng, Xiyuan
    IEEE ACCESS, 2019, 7 : 155130 - 155142
  • [27] Deep learning with long short-term memory networks for financial market predictions
    Fischer, Thomas
    Krauss, Christopher
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 270 (02) : 654 - 669
  • [28] Ionospheric TEC prediction using Long Short-Term Memory deep learning network
    Zhichao Wen
    Shuhui Li
    Lihua Li
    Bowen Wu
    Jianqiang Fu
    Astrophysics and Space Science, 2021, 366
  • [29] Wind speed prediction using hybrid long short-term memory neural network based approach
    Yadav, G. Rakesh
    Muneender, E.
    Santhosh, M.
    2021 INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND FUTURE ELECTRIC TRANSPORTATION (SEFET), 2021,
  • [30] A deep learning approach to predict significant wave height using long short-term memory
    Minuzzi, Felipe C.
    Farina, Leandro
    OCEAN MODELLING, 2023, 181