Agroforestry mapping using multi temporal hybrid CNN plus LSTM framework with landsat 8 satellite imagery and google earth engine

被引:1
作者
Vincent, Jenila M. [1 ]
Varalakshmi, P. [1 ]
机构
[1] Anna Univ, Dept Comp Technol, Chennai, India
来源
ENVIRONMENTAL RESEARCH COMMUNICATIONS | 2024年 / 6卷 / 06期
关键词
Google Earth Engine; Landsat; 8; data; convolutional neural network -long short term memory; agroforest mapping; COVER; PLANTATIONS; INDEX;
D O I
10.1088/2515-7620/ad549f
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Agroforestry is indeed a traditional practice followed in tropical countries like India. About 28.43 million hectare area is used for agroforest cultivation. By 2050 India has the mission of increasing the area under agroforestry to 53 million hectares. In this study, we have made an effort to map the agroforest areas using the geospatial tools and hybrid deep learning techniques. The land utilized for cultivation and various agroforestry activities such as rubber, tea, coconut, and banana plantation were classified as forest canopy by the existing classifiers taking the tree canopy density as a parameter. In light of proposing a solution to the issue, we have put forth a multi temporal hybrid deep learning framework which is a fusion of convolutional neural network, a deep neural net and long short term memory network to classify agroforestry distinguishing it from the forest canopy using remote sensing data. The experimentation was carried out in the southern districts of India, and Landsat 8 imagery was used to classify the agroforestry of the study area that includes tea, banana, rubber, coconut, and crop lands. An efficient multi temporal hybrid deep learning framework was designed to classify the agroforest plantation distinguishing it from crop lands and forest clusters. The experimental results of multi temporal hybrid CNN+LSTM outperformed CNN, LSTM, BiLSTM model reducing the error rate with respective accuracy and kappa score of 98.23% and 0.88. The proposed method provides a benchmark to accurately classify and estimate the LULC, particularly mapping the agroforest plantation for other regions across the country.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A fully automatic and high-accuracy surface water mapping framework on Google Earth Engine using Landsat time-series
    Yue, Linwei
    Li, Baoguang
    Zhu, Shuang
    Yuan, Qiangqiang
    Shen, Huanfeng
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (01) : 210 - 233
  • [42] Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine
    Zhou, Yan
    Dong, Jinwei
    Xiao, Xiangming
    Liu, Ronggao
    Zou, Zhenhua
    Zhao, Guosong
    Ge, Quansheng
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 689 : 366 - 380
  • [43] Mapping Multi-Decadal Mangrove Extent in the Northern Coast of Vietnam Using Landsat Time-Series Data on Google Earth Engine Platform
    Thuy Thi Phuong Vu
    Tien Dat Pham
    Saintilan, Neil
    Skidmore, Andrew
    Hung Viet Luu
    Quang Hien Vu
    Nga Nhu Le
    Huu Quang Nguyen
    Matsushita, Bunkei
    REMOTE SENSING, 2022, 14 (18)
  • [44] Analysis of Mangrove Forest Change from Multi-Temporal Landsat Imagery Using Google Earth Engine Application (Case Study: Belitung Archipelago 1990-2020)
    Cipta, Iqbal Maulana
    Sobarman, Fahmi Adnizar
    Sanjaya, Hartanto
    Darminto, Mohammad Rohmaneo
    2021 IEEE ASIA-PACIFIC CONFERENCE ON GEOSCIENCE, ELECTRONICS AND REMOTE SENSING TECHNOLOGY (AGERS-2021), 2021, : 90 - 95
  • [45] Monitoring the spatiotemporal dynamics of surface water body of the Xiaolangdi Reservoir using Landsat-5/7/8 imagery and Google Earth Engine
    Wang, Ruimeng
    Pan, Li
    Niu, Wenhui
    Li, Rumeng
    Zhao, Xiaoyang
    Bian, Xiqing
    Yu, Chong
    Xia, Haoming
    Chen, Taizheng
    OPEN GEOSCIENCES, 2021, 13 (01): : 1290 - 1302
  • [46] Mapping of bamboo forest bright and shadow areas using optical and SAR satellite data in Google Earth Engine
    Xiang, Songyang
    Xu, Zhanghua
    Shen, Wanling
    Chen, Lingyan
    Hao, Zhenbang
    Wang, Lin
    Liu, Zhicai
    Li, Zenglu
    Guo, Xiaoyu
    Zhang, Huafeng
    GEOCARTO INTERNATIONAL, 2023, 38 (01)
  • [47] Multi-Temporal Mapping of Soil Total Nitrogen Using Google Earth Engine across the Shandong Province of China
    Xiao, Wu
    Chen, Wenqi
    He, Tingting
    Ruan, Linlin
    Guo, Jiwang
    SUSTAINABILITY, 2020, 12 (24) : 1 - 20
  • [48] Bamboo mapping of Ethiopia, Kenya and Uganda for the year 2016 using multi-temporal Landsat imagery
    Zhao, Yuanyuan
    Feng, Duole
    Jayaraman, Durai
    Belay, Daniel
    Sebrala, Heiru
    Ngugi, John
    Maina, Eunice
    Akombo, Rose
    Otuoma, John
    Mutyaba, Joseph
    Kissa, Sam
    Qi, Shuhua
    Assefa, Fiker
    Oduor, Nellie Mugure
    Ndawula, Andrew Kalema
    Li, Yanxia
    Gong, Peng
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 66 : 116 - 125
  • [49] Multi-temporal Land Use Mapping of Coastal Wetlands Area using Machine Learning in Google Earth Engine
    Farda, N. M.
    5TH GEOINFORMATION SCIENCE SYMPOSIUM 2017 (GSS 2017), 2017, 98
  • [50] RAPID LANDSLIDE MAPPING USING MULTI-TEMPORAL IMAGE COMPOSITES FROM SENTINEL-1 AND SENTINEL-2 IMAGERY THROUGH GOOGLE EARTH ENGINE
    Prodromou, Maria
    Theocharidis, Christos
    Fotiou, Kyriaki
    Argyriou, Athanasios V.
    Polydorou, Thomaida
    Alatza, Stavroula
    Pittaki, Zampela
    Hadjimitsis, Diofantos
    Tzouvaras, Marios
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2596 - 2599