A new uniform structure for Hilbert C∗-modules

被引:0
作者
Fufaev, Denis [1 ]
Troitsky, Evgenij [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow Ctr Fundamental & Appl Math, Dept Mech & Math, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Hilbert C-& lowast; -module; Uniform structure; Totally bounded set; Multiplier; Compact operator; A-compact operator; C-ASTERISK-MODULES; COMPACT-OPERATORS; FRAMES;
D O I
10.1007/s43034-024-00368-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and study some new uniform structures for Hilbert C-& lowast;-modules over a C-& lowast;-algebra A. In particular, we prove that in some cases they have the same totally bounded sets. To define one of them, we introduce a new class of A-functionals: locally adjointable functionals, which have interesting properties in this context and seem to be of independent interest. A relation between these uniform structures and the theory of A-compact operators is established.
引用
收藏
页数:16
相关论文
共 25 条
  • [1] Frames and outer frames for Hilbert C*-modules
    Arambasic, Lj.
    Bakic, D.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (02) : 381 - 431
  • [2] Bakic D, 2004, HOUSTON J MATH, V30, P537
  • [3] WEAK FRAMES IN HILBERT C*-MODULES WITH APPLICATION IN GABOR ANALYSIS
    Bakic, Damir
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (04): : 1017 - 1075
  • [4] On unital C(X)-algebras and C(X)-valued conditional expectations of finite index
    Blanchard, Etienne
    Gogic, Ilja
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (12) : 2406 - 2418
  • [5] Bratteli O., 1987, Operator Algebras and Quantum Statistical Mechanics, V2, DOI DOI 10.1007/978-3-662-09089-3
  • [6] Hilbert C*-modules from group actions: beyond the finite orbits case
    Frank, Michael
    Manuilov, Vladimir
    Troitsky, Evgenij
    [J]. STUDIA MATHEMATICA, 2010, 200 (02) : 131 - 148
  • [7] Fufaev DV, 2023, RUSS J MATH PHYS, V30, P184, DOI 10.1134/S106192082302005X
  • [8] Fufaev DV, 2022, FUNCT ANAL APPL+, V56, P72, DOI 10.1134/S0016266322010075
  • [9] Fufaev DV, 2022, RUSS J MATH PHYS, V29, P170, DOI 10.1134/S1061920822020029
  • [10] KERNELS OF HILBERT MODULE MAPS: A COUNTEREXAMPLE
    Kaad, Jens
    Skeide, Michael
    [J]. JOURNAL OF OPERATOR THEORY, 2023, 89 (02) : 343 - 348