Applications of artificial intelligence to myeloproliferative neoplasms: a narrative review

被引:0
作者
Srisuwananukorn, Andrew [1 ]
Krull, Jordan E. [2 ,3 ]
Ma, Qin [2 ,3 ]
Zhang, Ping [2 ,4 ,5 ]
Pearson, Alexander T. [6 ]
Hoffman, Ronald [7 ]
机构
[1] Ohio State Univ, Comprehens Canc Ctr, Dept Internal Med, Div Hematol, Columbus, OH 43210 USA
[2] Ohio State Univ, Coll Med, Dept Biomed Informat, Columbus, OH 43210 USA
[3] Ohio State Univ, Pelotonia Inst Immuno Oncol, Comprehens Canc Ctr, Columbus, OH 43210 USA
[4] Ohio State Univ, Coll Engn, Dept Comp Sci & Engn, Columbus, OH 43210 USA
[5] Ohio State Univ, Translat Data Analyt Inst, Columbus, OH 43210 USA
[6] Univ Chicago, Dept Med, Sect Hematol Oncol, Chicago, IL USA
[7] Icahn Sch Med Mt Sinai, Tisch Canc Inst, Div Hematol & Med Oncol, New York, NY USA
关键词
Myeloproliferative neoplasms; myelofibrosis; artificial intelligence; machine learning; deep learning; INTERNATIONAL WORKING GROUP; ESSENTIAL THROMBOCYTHEMIA; PRIMARY MYELOFIBROSIS;
D O I
10.1080/17474086.2024.2389997
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
IntroductionArtificial intelligence (AI) is a rapidly growing field of computational research with the potential to extract nuanced biomarkers for the prediction of outcomes of interest. AI implementations for the prediction for clinical outcomes for myeloproliferative neoplasms (MPNs) are currently under investigation.Areas coveredIn this narrative review, we discuss AI investigations for the improvement of MPN clinical care utilizing either clinically available data or experimental laboratory findings. Abstracts and manuscripts were identified upon querying PubMed and the American Society of Hematology conference between 2000 and 2023. Overall, multidisciplinary researchers have developed AI methods in MPNs attempting to improve diagnostic accuracy, risk prediction, therapy selection, or pre-clinical investigations to identify candidate molecules as novel therapeutic agents.Expert opinionIt is our expert opinion that AI methods in MPN care and hematology will continue to grow with increasing clinical utility. We believe that AI models will assist healthcare workers as clinical decision support tools if appropriately developed with AI-specific regulatory guidelines. Though the reported findings in this review are early investigations for AI in MPNs, the collective work developed by the research community provides a promising framework for improving decision-making in the future of MPN clinical care.
引用
收藏
页码:669 / 677
页数:9
相关论文
共 43 条
  • [1] [Anonymous], 2024, LIVES GENERATIVE AI
  • [2] International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data
    Arber, Daniel A.
    Orazi, Attilio
    Hasserjian, Robert P.
    Borowitz, Michael J.
    Calvo, Katherine R.
    Kvasnicka, Hans-Michael
    Wang, Sa A.
    Bagg, Adam
    Barbui, Tiziano
    Branford, Susan
    Bueso-Ramos, Carlos E.
    Cortes, Jorge E.
    Dal Cin, Paola
    DiNardo, Courtney D.
    Dombret, Herve
    Duncavage, Eric J.
    Ebert, Benjamin L.
    Estey, Elihu H.
    Facchetti, Fabio
    Foucar, Kathryn
    Gangat, Naseema
    Gianelli, Umberto
    Godley, Lucy A.
    Gokbuget, Nicola
    Gotlib, Jason
    Hellstrom-Lindberg, Eva
    Hobbs, Gabriela S.
    Hoffman, Ronald
    Jabbour, Elias J.
    Kiladjian, Jean-Jacques
    Larson, Richard A.
    Le Beau, Michelle M.
    Loh, Mignon L. -C.
    Lowenberg, Bob
    Macintyre, Elizabeth
    Malcovati, Luca
    Mullighan, Charles G.
    Niemeyer, Charlotte
    Odenike, Olatoyosi M.
    Ogawa, Seishi
    Orfao, Alberto
    Papaemmanuil, Elli
    Passamonti, Francesco
    Porkka, Kimmo
    Pui, Ching-Hon
    Radich, Jerald P.
    Reiter, Andreas
    Rozman, Maria
    Rudelius, Martina
    Savona, Michael R.
    [J]. BLOOD, 2022, 140 (11) : 1200 - 1228
  • [3] New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment
    Cervantes, Francisco
    Dupriez, Brigitte
    Pereira, Arturo
    Passamonti, Francesco
    Reilly, John T.
    Morra, Enrica
    Vannucchi, Alessandro M.
    Mesa, Ruben A.
    Demory, Jean-Loup
    Barosi, Giovanni
    Rumi, Elisa
    Tefferi, Ayalew
    [J]. BLOOD, 2009, 113 (13) : 2895 - 2901
  • [4] Chen Tianqi, 2016, ARXIV
  • [5] Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence
    Collins, Gary S.
    Dhiman, Paula
    Andaur Navarro, Constanza L.
    Ma, Ji
    Hooft, Lotty
    Reitsma, Johannes B.
    Logullo, Patricia
    Beam, Andrew L.
    Peng, Lily
    Van Calster, Ben
    van Smeden, Maarten
    Riley, Richard D.
    Moons, Karel G. M.
    [J]. BMJ OPEN, 2021, 11 (07):
  • [6] Independent real-world application of a clinical-grade automated prostate cancer detection system
    da Silva, Leonard M.
    Pereira, Emilio M.
    Salles, Paulo G. O.
    Godrich, Ran
    Ceballos, Rodrigo
    Kunz, Jeremy D.
    Casson, Adam
    Viret, Julian
    Chandarlapaty, Sarat
    Ferreira, Carlos Gil
    Ferrari, Bruno
    Rothrock, Brandon
    Raciti, Patricia
    Reuter, Victor
    Dogdas, Belma
    DeMuth, George
    Sue, Jillian
    Kanan, Christopher
    Grady, Leo
    Fuchs, Thomas J.
    Reis-Filho, Jorge S.
    [J]. JOURNAL OF PATHOLOGY, 2021, 254 (02) : 147 - 158
  • [7] Dolezal JM., 2022, ARXIV
  • [8] A Journey Through JAK Inhibitors for the Treatment of Myeloproliferative Diseases
    Duminuco, Andrea
    Torre, Elena
    Palumbo, Giuseppe A.
    Harrison, Claire
    [J]. CURRENT HEMATOLOGIC MALIGNANCY REPORTS, 2023, 18 (05) : 176 - 189
  • [9] Extracting and classifying diagnosis dates from clinical notes: A case study
    Fu, Julia T.
    Sholle, Evan
    Krichevsky, Spencer
    Scandura, Joseph
    Campion, Thomas R.
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2020, 110
  • [10] Detection of primary myelofibrosis in blood serum via Raman spectroscopy assisted by machine learning approaches; correlation with clinical diagnosis
    Guleken, Zozan
    Ceylan, Zeynep
    Aday, Aynur
    Bayrak, AySe Gul
    Hindilerden, Ipek Yonal
    Nalcaci, Meliha
    Jakubczyk, Pawel
    Jakubczyk, Dorota
    Kula-Maximenko, Monika
    Depciuch, Joanna
    [J]. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2023, 53