Sustainable bioenergy contributes to cost-effective climate change mitigation in China

被引:2
|
作者
Xu, Yifan [1 ,2 ]
Smith, Pete [3 ]
Qin, Zhangcai [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Atmospher Sci, Guangdong Prov Key Lab Climate Change & Nat Disast, Zhuhai 519000, Peoples R China
[2] Sun Yat Sen Univ, Minist Educ, Key Lab Trop Atmosphere Ocean Syst, Zhuhai 519000, Peoples R China
[3] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen AB24 3UU, Scotland
基金
中国国家自然科学基金;
关键词
LIFE-CYCLE ASSESSMENT; TECHNOECONOMIC ANALYSIS; BIOMASS GASIFICATION; POWER-GENERATION; ENERGY RECOVERY; CROP; EMISSIONS; RESIDUES; IMPACTS; CAPTURE;
D O I
10.1016/j.isci.2024.110232
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bioenergy development is critical for achieving carbon neutrality. Biomass residues from agriculture, forest, and livestock manure provide substantial bioenergy resources in China, but their availability, climate, and economic impacts have not been evaluated systematically. Here we assess biomass sustainability, bioenergy potential, greenhouse gas emissions (GHG) reduction, and cost-effectiveness using an integrated data -modeling approach. Nationally, only 27% of biomass can be used for sustainable bioenergy production, but can contribute to significant climate change mitigation with optimized regional utilization. The annual GHG reduction can reach 1.0 Gt CO 2 e for bioenergy, or 1.4 Gt CO 2 e for bioenergy with carbon capture and storage (BECCS), which is comparable to total terrestrial ecosystem carbon sinks in China. The abatement cost varies regionally but is lower than many other carbon removal technologies. Our findings reveal region -specific bioenergy pathways that contribute to carbon neutrality, and encourage future assessments to explore factors including technological advances and carbon markets.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Sustainable and cost-effective palladium substitute
    JOT, Journal fuer Oberflaechentechnik, 2022, 63 (01): : 28 - 29
  • [22] Cost-effective and Sustainable Sanitation Options
    Guimet, V.
    Fournier, V.
    Le Goas, H.
    Arnaud, P.
    Audic, J. M.
    Vuathier, J.
    WATER PRACTICE AND TECHNOLOGY, 2010, 5 (04):
  • [23] Sustainable and Cost-Effective Gel Documentation
    Asad, Nadeem
    Cregg, Scott
    Shakya, Sudeep
    Stegman, Sutton
    Timmons, Lisa
    METHODS AND PROTOCOLS, 2023, 6 (02)
  • [24] Sustainable Cost-Effective Solution of Climate Emergency With Many More Societal Benefits
    Singh, Rajendra
    Powar, Vishwas
    Banavath, Satish Naik
    Dutta, Rajib
    Agarwal, Vivek
    Paniyil, Prahaladh
    Mantov, George
    Adapa, Ram
    Shea, John J.
    Griddaluru, Venkata Yagna
    IEEE POWER ELECTRONICS MAGAZINE, 2024, 11 (03): : 51 - 62
  • [25] IS CO2 MITIGATION COST-EFFECTIVE?
    Christopher Monckton of Brenchley
    INTERNATIONAL SEMINAR ON NUCLEAR WAR AND PLANETARY EMERGENCIES: 45TH SESSION, 2013, : 167 - 182
  • [26] Effective mitigation of climate change with sustainable development of energy, water and environment systems
    Kilkis, Siir
    Krajacic, Goran
    Duic, Neven
    Rosen, Marc A.
    Al-Nimr, Moh'd Ahmad
    ENERGY CONVERSION AND MANAGEMENT, 2022, 269
  • [27] COST CONCEPTS FOR CLIMATE CHANGE MITIGATION
    Paltsev, Sergey
    Capros, Pantelis
    CLIMATE CHANGE ECONOMICS, 2013, 4
  • [28] Implications of climate change mitigation strategies on international bioenergy trade
    Daioglou, Vassilis
    Muratori, Matteo
    Lamers, Patrick
    Fujimori, Shinichiro
    Kitous, Alban
    Koberle, Alexandre C.
    Bauer, Nico
    Junginger, Martin
    Kato, Etsushi
    Leblanc, Florian
    Mima, Silvana
    Wise, Marshal
    van Vuuren, Detlef P.
    CLIMATIC CHANGE, 2020, 163 (03) : 1639 - 1658
  • [29] Implications of climate change mitigation strategies on international bioenergy trade
    Vassilis Daioglou
    Matteo Muratori
    Patrick Lamers
    Shinichiro Fujimori
    Alban Kitous
    Alexandre C. Köberle
    Nico Bauer
    Martin Junginger
    Etsushi Kato
    Florian Leblanc
    Silvana Mima
    Marshal Wise
    Detlef P. van Vuuren
    Climatic Change, 2020, 163 : 1639 - 1658
  • [30] The climate change mitigation potential of bioenergy with carbon capture and storage
    S. V. Hanssen
    V. Daioglou
    Z. J. N. Steinmann
    J. C. Doelman
    D. P. Van Vuuren
    M. A. J. Huijbregts
    Nature Climate Change, 2020, 10 : 1023 - 1029