Nickel-Nitrogen-Carbon (Ni-N-C) Electrocatalysts Toward CO2 electroreduction to CO: Advances, Optimizations, Challenges, and Prospects

被引:10
作者
Pang, Qingqing [1 ]
Fan, Xizheng [1 ]
Sun, Kaihang [1 ]
Xiang, Kun [2 ]
Li, Baojun [1 ]
Zhao, Shufang [3 ]
Kim, Young Dok [3 ]
Liu, Qiaoyun [1 ]
Liu, Zhongyi [1 ]
Peng, Zhikun [1 ]
机构
[1] Zhengzhou Univ, Henan Inst Adv Technol, Coll Chem, Sch Chem Engn, Zhengzhou, Peoples R China
[2] Wuhan Inst Technol, Sch Chem & Environm Engn, Wuhan, Peoples R China
[3] Sungkyunkwan Univ, Dept Chem, Suwon, South Korea
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
active sites; CO2; reduction; electrocatalysis; Ni-N-C electrocatalysts; optimization strategies; SINGLE-ATOM CATALYSTS; ELECTROCHEMICAL REDUCTION; MULTICARBON PRODUCTS; HYDROGEN EVOLUTION; METAL; SITES; PERFORMANCE; NANOPARTICLES; ELECTROLYTE; SELECTIVITY;
D O I
10.1002/eem2.12731
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrocatalytic reduction of CO2 into high energy-density fuels and value-added chemicals under mild conditions can promote the sustainable cycle of carbon and decrease current energy and environmental problems. Constructing electrocatalyst with high activity, selectivity, stability, and low cost is really matter to realize industrial application of electrocatalytic CO2 reduction (ECR). Metal-nitrogen-carbon (M-N-C), especially Ni-N-C, display excellent performance, such as nearly 100% CO selectivity, high current density, outstanding tolerance, etc., which is considered to possess broad application prospects. Based on the current research status, starting from the mechanism of ECR and the existence form of Ni active species, the latest research progress of Ni-N-C electrocatalysts in CO2 electroreduction is systematically summarized. An overview is emphatically interpreted on the regulatory strategies for activity optimization over Ni-N-C, including N coordination modulation, vacancy defects construction, morphology design, surface modification, heteroatom activation, and bimetallic cooperation. Finally, some urgent problems and future prospects on designing Ni-N-C catalysts for ECR are discussed. This review aims to provide the guidance for the design and development of Ni-N-C catalysts with practical application.
引用
收藏
页数:21
相关论文
共 141 条
[1]   Single Atom Catalysts (SAC) trapped in defective and nitrogen-doped graphene supported on metal substrates [J].
Baby, Anu ;
Trovato, Laura ;
Di Valentin, Cristiana .
CARBON, 2021, 174 :772-788
[2]   Structure Sensitivity and Evolution of Nickel-Bearing Nitrogen-Doped Carbons in the Electrochemical Reduction of CO2 [J].
Buchele, Simon ;
Martin, Antonio J. ;
Mitchell, Sharon ;
Krumeich, Frank ;
Collins, Sean M. ;
Xi, Shibo ;
Borgna, Armando ;
Perez-Ramirez, Javier .
ACS CATALYSIS, 2020, 10 (05) :3444-3454
[3]   Enhancement of Mass Transfer for Facilitating Industrial-Level CO2 Electroreduction on Atomic Ni-N4 Sites [J].
Chen, Baotong ;
Li, Boran ;
Tian, Ziqi ;
Liu, Wenbo ;
Liu, WenPing ;
Sun, Weiwei ;
Wang, Kang ;
Chen, Liang ;
Jiang, Jianzhuang .
ADVANCED ENERGY MATERIALS, 2021, 11 (40)
[4]   Unveiling the Proton-Feeding Effect in Sulfur-Doped Fe-N-C Single-Atom Catalyst for Enhanced CO2 Electroreduction [J].
Chen, Shanyong ;
Li, Xiaoqing ;
Kao, Cheng-Wei ;
Luo, Tao ;
Chen, Kejun ;
Fu, Junwei ;
Ma, Chao ;
Li, Hongmei ;
Li, Ming ;
Chan, Ting-Shan ;
Liu, Min .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (32)
[5]   Hierarchical Ni/N/C Single-Site Catalyst Achieving Industrial-Level Current Density and Ultra-Wide Potential Plateau of High CO Faradic Efficiency for CO2 Electroreduction [J].
Chen, Yiqun ;
Zhang, Junru ;
Tian, Jingyi ;
Guo, Yue ;
Xu, Fengfei ;
Zhang, Yan ;
Wang, Xizhang ;
Yang, Lijun ;
Wu, Qiang ;
Hu, Zheng .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (20)
[6]   Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level [J].
Chen, Zhipeng ;
Zhang, Xinxin ;
Liu, Wei ;
Jiao, Mingyang ;
Mou, Kaiwen ;
Zhang, Xiangping ;
Liu, Licheng .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (04) :2349-2356
[7]   Two-dimensional materials for electrochemical CO2 reduction: materials, in situ/operando characterizations, and perspective [J].
Chen, Zuolong ;
Wang, Xiyang ;
Mills, Joel P. ;
Du, Cheng ;
Kim, Jintae ;
Wen, John ;
Wu, Yimin A. .
NANOSCALE, 2021, 13 (47) :19712-19739
[8]   Atomically Dispersed Ni/Cu Dual Sites for Boosting the CO2 Reduction Reaction [J].
Cheng, Huiyuan ;
Wu, Xuemei ;
Feng, Manman ;
Li, Xiangcun ;
Lei, Guangping ;
Fan, Zihao ;
Pan, Dongwei ;
Cui, Fujun ;
He, Gaohong .
ACS CATALYSIS, 2021, 11 (20) :12673-12681
[9]   Activation of Transition Metal (Fe, Co and Ni)-Oxide Nanoclusters by Nitrogen Defects in Carbon Nanotube for Selective CO2 Reduction Reaction [J].
Cheng, Yi ;
Chen, Jinfan ;
Yang, Chujie ;
Wang, Huiping ;
Johannessen, Bernt ;
Thomsen, Lars ;
Saunders, Martin ;
Xiao, Jianping ;
Yang, Shize ;
Jiang, San Ping .
ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (01)
[10]   Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction [J].
Cheng, Yi ;
Zhao, Shiyong ;
Johannessen, Bernt ;
Veder, Jean-Pierre ;
Saunders, Martin ;
Rowles, Matthew R. ;
Cheng, Min ;
Liu, Chang ;
Chisholm, Matthew F. ;
De Marco, Roland ;
Cheng, Hui-Ming ;
Yang, Shi-Ze ;
Jiang, San Ping .
ADVANCED MATERIALS, 2018, 30 (13)