IMPROVEMENTS OF A-NUMERICAL RADIUS FOR SEMI-HILBERTIAN SPACE OPERATORS

被引:4
作者
Qiao, Hongwei [1 ]
Hai, Guojun [2 ]
Chen, Alatancang [1 ]
机构
[1] Inner Mongolia Normal Univ, Coll Math Sci, Hohhot 010022, Peoples R China
[2] Inner Mongolia Univ, Sch Math Sci, Hohhot 010022, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2024年 / 18卷 / 02期
关键词
A-numerical radius; inequality; A-operator semi-norm; semi-inner product; INEQUALITIES;
D O I
10.7153/jmi-2024-18-43
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a bounded positive operator on a complex Hilbert space ( H , (center dot , center dot) ) . The semi -product ( x , y ) A : = ( Ax , y ) , x , y E H , induces a semi -norm II center dot II A on H . Let co A ( T ) and II T II A denote the A -numerical radius and the A -operator semi -norm of an operator T in semiHilbertian space ( H , (center dot , center dot) A ) , respectively. In this paper, some new bounds for the A -numerical radius of operators in semi -inner product space induced by A are derived. In particular, for T E B A ( H ) and a 0, we prove that co A 4 ( T ) 1 + 2 a 16 ( 1 +a ) II T A T + TT A II 2 A + 3 + 2 a 8 ( 1 +a) II T A T + TT A II A co A ( T 2 ) and co A 4 ( T ) s 1 + 2 a 8 ( 1 + a ) II T A T + TT A II 2 A + 1 2 ( 1 + a)co A 2 ( T 2 ) . It is worth noting that our results improve the existing A -numerical radius inequalities. Further, we also give a refinement inequality of A -operator semi -norm triangle inequality.
引用
收藏
页码:791 / 810
页数:20
相关论文
共 27 条
[11]   Some numerical radius inequality for several semi-Hilbert space operators [J].
Conde, Cristian ;
Feki, Kais .
LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (06) :1054-1071
[12]  
DAVIDSON KR, 1986, J REINE ANGEW MATH, V368, P43
[14]  
Faghih-Ahmadi M, 2016, ITAL J PURE APPL MAT, P73
[15]   SOME NUMERICAL RADIUS INEQUALITIES FOR SEMI-HILBERT SPACE OPERATORS [J].
Feki, Kais .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (06) :1385-1405
[16]   A note on the A-numerical radius of operators in semi-Hilbert spaces [J].
Feki, Kais .
ARCHIV DER MATHEMATIK, 2020, 115 (05) :535-544
[17]   Spectral radius of semi-Hilbertian space operators and its applications [J].
Feki, Kais .
ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (04) :929-946
[18]  
Guesba M, 2023, Novi Sad Journal of Mathematics, V54, P213, DOI [10.30755/nsjom.15867, 10.30755/NSJOM.15867, DOI 10.30755/NSJOM.15867]
[19]   A-numerical radius inequalities and A-translatable radii of semi-Hilbert space operators [J].
Guesba, Messaoud ;
Bhunia, Pintu ;
Paul, Kallol .
FILOMAT, 2023, 37 (11) :3443-3456
[20]   Some generalizations of A-numerical radius inequalities for semi-Hilbert space operators [J].
Guesba, Messaoud .
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2021, 14 (04) :681-692