IMPROVEMENTS OF A-NUMERICAL RADIUS FOR SEMI-HILBERTIAN SPACE OPERATORS

被引:4
作者
Qiao, Hongwei [1 ]
Hai, Guojun [2 ]
Chen, Alatancang [1 ]
机构
[1] Inner Mongolia Normal Univ, Coll Math Sci, Hohhot 010022, Peoples R China
[2] Inner Mongolia Univ, Sch Math Sci, Hohhot 010022, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2024年 / 18卷 / 02期
关键词
A-numerical radius; inequality; A-operator semi-norm; semi-inner product; INEQUALITIES;
D O I
10.7153/jmi-2024-18-43
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a bounded positive operator on a complex Hilbert space ( H , (center dot , center dot) ) . The semi -product ( x , y ) A : = ( Ax , y ) , x , y E H , induces a semi -norm II center dot II A on H . Let co A ( T ) and II T II A denote the A -numerical radius and the A -operator semi -norm of an operator T in semiHilbertian space ( H , (center dot , center dot) A ) , respectively. In this paper, some new bounds for the A -numerical radius of operators in semi -inner product space induced by A are derived. In particular, for T E B A ( H ) and a 0, we prove that co A 4 ( T ) 1 + 2 a 16 ( 1 +a ) II T A T + TT A II 2 A + 3 + 2 a 8 ( 1 +a) II T A T + TT A II A co A ( T 2 ) and co A 4 ( T ) s 1 + 2 a 8 ( 1 + a ) II T A T + TT A II 2 A + 1 2 ( 1 + a)co A 2 ( T 2 ) . It is worth noting that our results improve the existing A -numerical radius inequalities. Further, we also give a refinement inequality of A -operator semi -norm triangle inequality.
引用
收藏
页码:791 / 810
页数:20
相关论文
共 27 条
[1]   A refinement of the Cauchy-Schwarz inequality accompanied by new numerical radius upper bounds [J].
Al-Dolat, Mohammed ;
Jaradat, Imad .
FILOMAT, 2023, 37 (03) :971-977
[2]   Metric properties of projections in semi-Hilbertian spaces [J].
Arias, M. Laura ;
Corach, Gustavo ;
Gonzalez, M. Celeste .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (01) :11-28
[3]   Partial isometries in semi-Hilbertian spaces [J].
Arias, M. Laura ;
Corach, Gustavo ;
Gonzalez, M. Celeste .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1460-1475
[4]   Weak majorization inequalities and convex functions [J].
Aujla, JS ;
Silva, FC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 369 :217-233
[5]  
Baklouti H, 2020, LINEAR MULTILINEAR A, V68, P845, DOI 10.1080/03081087.2019.1593925
[6]   Joint numerical ranges of operators in semi-Hilbertian spaces [J].
Baklouti, Hamadi ;
Feki, Kais ;
Ahmed, Ould Ahmed Mahmoud Sid .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 555 :266-284
[7]   REFINEMENT OF SEMINORM AND NUMERICAL RADIUS INEQUALITIES OF SEMI-HILBERTIAN SPACE OPERATORS [J].
Bhunia, Pintu ;
Nayak, Raj Kumar ;
Paul, Kallol .
MATHEMATICA SLOVACA, 2022, 72 (04) :969-976
[8]  
Bhunia P, 2020, ELECTRON J LINEAR AL, V36
[9]  
Bhunia P, 2021, B IRAN MATH SOC, V47, P435, DOI 10.1007/s41980-020-00392-8
[10]   Operator norm inequalities in semi-Hilbertian spaces [J].
Celeste Gonzalez, Maria .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (01) :370-378