Development of lung segmentation method in x-ray images of children based on TransResUNet

被引:6
作者
Chen, Lingdong [1 ,2 ,3 ]
Yu, Zhuo [4 ]
Huang, Jian [1 ,2 ,3 ]
Shu, Liqi [5 ]
Kuosmanen, Pekka [2 ,6 ]
Shen, Chen [1 ,2 ,3 ]
Ma, Xiaohui [7 ]
Li, Jing [1 ,2 ,3 ]
Sun, Chensheng [1 ,2 ,3 ]
Li, Zheming [1 ,2 ,3 ]
Shu, Ting [8 ]
Yu, Gang [1 ,2 ,3 ,9 ]
机构
[1] Zhejiang Univ, Sch Med, Dept Data & Informat, Childrens Hosp, Hangzhou, Peoples R China
[2] Sino Finland Joint AI Lab Child Hlth Zhejiang Prov, Med Engn & Informat Res Inst Childrens Hlth, Hangzhou, Peoples R China
[3] Natl Clin Res Ctr Child Hlth, Med Engn & Informat Res Inst Childrens Hlth, Hangzhou, Peoples R China
[4] Huiying Med Technol Beijing Co Ltd, Dept Sci Res, Beijing, Peoples R China
[5] Brown Univ, Dept Neurol, Warren Alpert Med Sch, Providence, RI USA
[6] Avaintec Oy Co, Dept Sci Res, Helsinki, Finland
[7] Zhejiang Univ, Childrens Hosp, Dept Radiol, Sch Med, Hangzhou, Peoples R China
[8] Natl Inst Hosp Adm, Dept Informat Standardizat Res, NHC, Beijing, Peoples R China
[9] Zhejiang Univ, Polytech Inst, Hangzhou, Peoples R China
来源
FRONTIERS IN RADIOLOGY | 2023年 / 3卷
基金
国家重点研发计划;
关键词
children; lung segmentation; TransResUNet; chest x-ray; multi-center;
D O I
10.3389/fradi.2023.1190745
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Chest x-ray (CXR) is widely applied for the detection and diagnosis of children's lung diseases. Lung field segmentation in digital CXR images is a key section of many computer-aided diagnosis systems.Objective In this study, we propose a method based on deep learning to improve the lung segmentation quality and accuracy of children's multi-center CXR images.Methods The novelty of the proposed method is the combination of merits of TransUNet and ResUNet. The former can provide a self-attention module improving the feature learning ability of the model, while the latter can avoid the problem of network degradation.Results Applied on the test set containing multi-center data, our model achieved a Dice score of 0.9822.Conclusions This novel lung segmentation method proposed in this work based on TransResUNet is better than other existing medical image segmentation networks.
引用
收藏
页数:7
相关论文
共 33 条
[1]   Recurrent residual U-Net for medical image segmentation [J].
Alom, Md Zahangir ;
Yakopcic, Chris ;
Hasan, Mahmudul ;
Taha, Tarek M. ;
Asari, Vijayan K. .
JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
[2]   Medical Image Segmentation Algorithm Based on Feedback Mechanism CNN [J].
An, Feng-Ping ;
Liu, Zhi-Wen .
CONTRAST MEDIA & MOLECULAR IMAGING, 2019, 2019
[3]  
Antani S., 2015, The United States of America, P1
[4]   Ensemble learning based automatic detection of tuberculosis in chest X-ray images using hybrid feature descriptors [J].
Ayaz, Muhammad ;
Shaukat, Furqan ;
Raja, Gulistan .
PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2021, 44 (01) :183-194
[5]  
Chen J., 2021, Cells, DOI DOI 10.48550/ARXIV.2102.04306
[6]   Diagnosis of common pulmonary diseases in children by X-ray images and deep learning [J].
Chen, Kai-Chi ;
Yu, Hong-Ren ;
Chen, Wei-Shiang ;
Lin, Wei-Che ;
Lee, Yi-Chen ;
Chen, Hung-Hsun ;
Jiang, Jyun-Hong ;
Su, Ting-Yi ;
Tsai, Chang-Ku ;
Tsai, Ti-An ;
Tsai, Chih-Min ;
Lu, Henry Horng-Shing .
SCIENTIFIC REPORTS, 2020, 10 (01)
[7]  
Cicek O., 2016, Medical Image Computing and Computer-Assisted Intervention, V9901, P424, DOI [DOI 10.1007/978-3-319-46723-8_49, 10.1007/978-3-319-46723-849, 10.1007/978-3-319-46723-8_49]
[8]  
Dosovitskiy Alexey., 2021, PROC INT C LEARN REP, P2021
[9]   Graph Neural Networks for Social Recommendation [J].
Fan, Wenqi ;
Ma, Yao ;
Li, Qing ;
He, Yuan ;
Zhao, Eric ;
Tang, Jiliang ;
Yin, Dawei .
WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, :417-426
[10]   UNETR: Transformers for 3D Medical Image Segmentation [J].
Hatamizadeh, Ali ;
Tang, Yucheng ;
Nath, Vishwesh ;
Yang, Dong ;
Myronenko, Andriy ;
Landman, Bennett ;
Roth, Holger R. ;
Xu, Daguang .
2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, :1748-1758