Exploiting Diffusion Prior for Real-World Image Super-Resolution

被引:21
|
作者
Wang, Jianyi [1 ]
Yue, Zongsheng [1 ]
Zhou, Shangchen [1 ]
Chan, Kelvin C. K. [1 ]
Loy, Chen Change [1 ]
机构
[1] Nanyang Technol Univ, S Lab, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
Super-resolution; Image restoration; Diffusion models; Generative prior;
D O I
10.1007/s11263-024-02168-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel approach to leverage prior knowledge encapsulated in pre-trained text-to-image diffusion models for blind super-resolution. Specifically, by employing our time-aware encoder, we can achieve promising restoration results without altering the pre-trained synthesis model, thereby preserving the generative prior and minimizing training cost. To remedy the loss of fidelity caused by the inherent stochasticity of diffusion models, we employ a controllable feature wrapping module that allows users to balance quality and fidelity by simply adjusting a scalar value during the inference process. Moreover, we develop a progressive aggregation sampling strategy to overcome the fixed-size constraints of pre-trained diffusion models, enabling adaptation to resolutions of any size. A comprehensive evaluation of our method using both synthetic and real-world benchmarks demonstrates its superiority over current state-of-the-art approaches. Code and models are available at https://github.com/IceClear/StableSR.
引用
收藏
页码:5929 / 5949
页数:21
相关论文
共 50 条
  • [31] Semantic Segmentation Guided Real-World Super-Resolution
    Aakerberg, Andreas
    Johansen, Anders S.
    Nasrollahi, Kamal
    Moeslund, Thomas B.
    2022 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW 2022), 2022, : 449 - 458
  • [32] A Spectral Diffusion Prior for Unsupervised Hyperspectral Image Super-Resolution
    Liu, Jianjun
    Wu, Zebin
    Xiao, Liang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [33] StarSRGAN: Improving Real-World Blind Super-Resolution
    Vo K.D.
    Bui L.T.
    Computer Science Research Notes, 2023, 31 (1-2): : 62 - 72
  • [34] Investigating Tradeoffs in Real-World Video Super-Resolution
    Chan, Kelvin C. K.
    Zhou, Shangchen
    Xu, Xiangyu
    Loy, Chen Change
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5952 - 5961
  • [35] Learning Degradation for Real-World Face Super-Resolution
    Chen, Jin
    Chen, Jun
    Wang, Xiaofen
    Xu, Dongshu
    Liang, Chao
    Han, Zhen
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT II, 2024, 14496 : 120 - 131
  • [36] Real-infraredSR: real-world infrared image super-resolution via thermal imager
    Zhou, Yicheng
    Liu, Yuan
    Yuan, Liyin
    Chen, Qian
    Gu, Guohua
    Sui, Xiubao
    OPTICS EXPRESS, 2023, 31 (22) : 36171 - 36187
  • [37] Dual Adversarial Adaptation for Cross-Device Real-World Image Super-Resolution
    Xu, Xiaoqian
    Wei, Pengxu
    Chen, Weikai
    Liu, Yang
    Mao, Mingzhi
    Lin, Liang
    Li, Guanbin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5657 - 5666
  • [38] Frequency-Aware Degradation Modeling for Real-World Thermal Image Super-Resolution
    Qu, Chao
    Chen, Xiaoyu
    Xu, Qihan
    Han, Jing
    ENTROPY, 2024, 26 (03)
  • [39] Unsupervised Degradation Aware and Representation for Real-World Remote Sensing Image Super-Resolution
    Guo, Wen-Zhong
    Weng, Wu-Ding
    Chen, Guang-Yong
    Su, Jian-Nan
    Gan, Min
    Philip Chen, C. L.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 1
  • [40] A Real-World Benchmark for Sentinel-2 Multi-Image Super-Resolution
    Pawel Kowaleczko
    Tomasz Tarasiewicz
    Maciej Ziaja
    Daniel Kostrzewa
    Jakub Nalepa
    Przemyslaw Rokita
    Michal Kawulok
    Scientific Data, 10