Nonreciprocal Quantum Batteries

被引:35
作者
Ahmadi, B. [1 ]
Mazurek, P. [1 ,2 ]
Horodecki, P. [1 ]
Barzanjeh, S. [3 ]
机构
[1] Univ Gdansk, Int Ctr Theory Quantum Technol, Jana Bazynskiego 1A, PL-80309 Gdansk, Poland
[2] Univ Gdansk, Inst Informat, Fac Math Phys & Informat, Wita Stwosza 63, PL-80308 Gdansk, Poland
[3] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
NON-RECIPROCITY;
D O I
10.1103/PhysRevLett.132.210402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonreciprocity, arising from the breaking of time -reversal symmetry, has become a fundamental tool in diverse quantum technology applications. It enables directional flow of signals and efficient noise suppression, constituting a key element in the architecture of current quantum information and computing systems. Here we explore its potential in optimizing the charging dynamics of a quantum battery. By introducing nonreciprocity through reservoir engineering during the charging process, we induce a directed energy flow from the quantum charger to the battery, resulting in a substantial increase in energy accumulation. Despite local dissipation, the nonreciprocal approach demonstrates a fourfold increase in battery energy compared to conventional charger -battery systems. This effect is observed in the stationary limit and remains applicable even in overdamped coupling regimes, eliminating the need for precise temporal control over evolution parameters. Our result can be extended to a chiral network of quantum nodes, serving as a multicell quantum battery system to enhance storage capacity. The proposed approach is straightforward to implement using current state-of-the-art quantum circuits, both in photonics and superconducting quantum systems. In a broader context, the concept of nonreciprocal charging has significant implications for sensing, energy capture, and storage technologies or studying quantum thermodynamics.
引用
收藏
页数:7
相关论文
共 64 条
[1]   Directional Amplification with a Josephson Circuit [J].
Abdo, Baleegh ;
Sliwa, Katrina ;
Frunzio, Luigi ;
Devoret, Michel .
PHYSICAL REVIEW X, 2013, 3 (03) :1-8
[2]   Entanglement boost for extractable work from ensembles of quantum batteries [J].
Alicki, Robert ;
Fannes, Mark .
PHYSICAL REVIEW E, 2013, 87 (04)
[3]   Quantum versus classical many-body batteries [J].
Andolina, Gian Marcello ;
Keck, Maximilian ;
Mari, Andrea ;
Giovannetti, Vittorio ;
Polini, Marco .
PHYSICAL REVIEW B, 2019, 99 (20)
[4]   Extractable Work, the Role of Correlations, and Asymptotic Freedom in Quantum Batteries [J].
Andolina, Gian Marcello ;
Keck, Maximilian ;
Mari, Andrea ;
Campisi, Michele ;
Giovannetti, Vittorio ;
Polini, Marco .
PHYSICAL REVIEW LETTERS, 2019, 122 (04)
[5]   Charger-mediated energy transfer in exactly solvable models for quantum batteries [J].
Andolina, Gian Marcello ;
Farina, Donato ;
Mari, Andrea ;
Pellegrini, Vittorio ;
Giovannetti, Vittorio ;
Polini, Marco .
PHYSICAL REVIEW B, 2018, 98 (20)
[6]  
aps, About us, DOI [10.1103/PhysRevLett.132.210402, DOI 10.1103/PHYSREVLETT.132.210402]
[7]  
Auld BA., 1959, IRE Transactions on Microwave Theory and Techniques, V7, P238, DOI 10.1109/TMTT.1959.1124688
[8]   Dissipative Charging of a Quantum Batter [J].
Barra, Felipe .
PHYSICAL REVIEW LETTERS, 2019, 122 (21)
[9]   Mechanical on-chip microwave circulator [J].
Barzanjeh, S. ;
Wulf, M. ;
Peruzzo, M. ;
Kalaee, M. ;
Dieterle, P. B. ;
Painter, O. ;
Fink, J. M. .
NATURE COMMUNICATIONS, 2017, 8
[10]   Manipulating the Flow of Thermal Noise in Quantum Devices [J].
Barzanjeh, Shabir ;
Aquilina, Matteo ;
Xuereb, Andre .
PHYSICAL REVIEW LETTERS, 2018, 120 (06)