Adaptive Neural Network Output-Feedback Control for Uncertain Nonlinear Systems via Event-Triggered Output

被引:1
|
作者
Hu, Yunsong [1 ]
Yan, Huaicheng [1 ,2 ]
Zhang, Hao [3 ]
Wang, Meng [1 ]
Chen, Chaoyang [2 ]
机构
[1] East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
[2] Hunan Univ Sci & Technol, Sch Informat & Elect Engn, Xiangtan 411201, Peoples R China
[3] Tongji Univ, Dept Control Sci & Engn, Shanghai 200092, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2024年 / 54卷 / 10期
基金
中国国家自然科学基金;
关键词
Adaptive control; backstepping control; event-triggered control (ETC); neural network (NN); nonlinear systems; output feedback;
D O I
10.1109/TSMC.2024.3408652
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article systematically studies the issue of adaptive neural network (NN) output-feedback control for uncertain nonlinear systems using event-triggered output. First, to tackle the problem of unmeasurable states, a compact state observer using event-triggered output is constructed. Then, since the event-triggered output signals are discontinuous, the virtual control laws in backstepping design are no longer differentiable. Hence, the dynamic surface control scheme is introduced to resolve this problem. Unlike existing work requiring system functions to satisfy Lipschitz continuity condition, adaptive NN control is incorporated into the designed algorithm to relax the above constraint. What is more, the event-triggered mechanism is also used for parameter estimation to avoid waste of computing and communication resources. Finally, the results of comparative simulations and the DC brush motor experiment are depicted to demonstrate the practicality and effectiveness of the proposed method.
引用
收藏
页码:5864 / 5875
页数:12
相关论文
共 50 条
  • [21] Neural Network Adaptive Tracking Control of Uncertain MIMO Nonlinear Systems With Output Constraints and Event-Triggered Inputs
    Wu, Li-Bing
    Park, Ju H.
    Xie, Xiang-Peng
    Liu, Ya-Juan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (02) : 695 - 707
  • [22] Output-Feedback Adaptive Neural Network Control for Uncertain Nonsmooth Nonlinear Systems With Input Deadzone and Saturation
    Zong, Guangdeng
    Xu, Qian
    Zhao, Xudong
    Su, Shun-Feng
    Song, Limei
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (09) : 5957 - 5969
  • [23] Dynamic Event-Triggered Low-Computation Neural Adaptive Output-Feedback Control for Strict-Feedback Nonlinear Systems with Prescribed Performance
    Xu, Haibo
    Ouyang, Xinyu
    Zhao, Nannan
    ENGINEERING LETTERS, 2025, 33 (04) : 840 - 848
  • [24] Adaptive Event-Triggered Output-Feedback Stabilization With Exponential Convergence
    Huang, Yaxin
    Liu, Yungang
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 2712 - 2723
  • [25] Adaptive Event-Triggered Output-Feedback Stabilization With Exponential Convergence
    Huang, Yaxin
    Liu, Yungang
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 2712 - 2723
  • [26] Event-triggered adaptive output-feedback control for nonlinear state-constrained systems using tangent-type nonlinear mapping
    Wei, Yan
    Zhou, Pingfang
    Xie, Weicheng
    Tang, Jiwei
    Duan, Dengping
    ASIAN JOURNAL OF CONTROL, 2022, 24 (05) : 2189 - 2201
  • [27] Adaptive Event-Triggered Control for Switched p-Normal Nonlinear Systems via Output Feedback
    Shu, Feng
    Zhai, Junyong
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (07) : 7060 - 7068
  • [28] Adaptive fuzzy output feedback control for nonlinear systems based on event-triggered mechanism
    Lu, Kaixin
    Liu, Zhi
    Lai, Guanyu
    Chen, C. L. Philip
    Zhang, Yun
    INFORMATION SCIENCES, 2019, 486 : 419 - 433
  • [29] Adaptive Output-Feedback Stabilization for a Class of Uncertain Nonlinear Systems
    Shang Fang
    Liu Yungang
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 2, 2008, : 317 - 322
  • [30] Adaptive output-feedback stabilization for a class of uncertain nonlinear systems
    Shang F.
    Liu Y.-G.
    Zidonghua Xuebao/ Acta Automatica Sinica, 2010, 36 (01): : 92 - 100