Quantization of pseudo-hermitian systems

被引:0
作者
Baldiotti, M. C. [1 ]
Fresneda, R. [2 ]
机构
[1] Londrina State Univ UEL, Phys Dept, Londrina, Brazil
[2] Fed Univ ABC, Ctr Math Computat & Cognit, UFABC, Santo Andre, Brazil
基金
巴西圣保罗研究基金会;
关键词
canonical quantization; pseudo-hermitian operators; pseudoclassical theory; Heisenberg interaction; PT-SYMMETRY; HAMILTONIANS;
D O I
10.1088/1751-8121/ad5bc9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work is a generalization of (Raimundo et al 2021 Phys. Rev. A 103 022201) to Grassmann algebras of arbitrary dimensions. Here we present a covariant quantization scheme for pseudoclassical theories focused on non-hermitian quantum mechanics. The quantization maps canonically related pseudoclassical theories to equivalent quantum realizations in arbitrary dimensions. We apply the formalism to the problem of two coupled spins with Heisenberg interaction.
引用
收藏
页数:16
相关论文
共 50 条
[31]   Constructing Exactly Solvable Pseudo-hermitian Many-Particle Quantum Systems by Isospectral Deformation [J].
Ghosh, Pijush K. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (04) :1143-1151
[32]   OPTIMAL TIME EVOLUTION FOR PSEUDO-HERMITIAN HAMILTONIANS [J].
Wang, W. H. ;
Chen, Z. L. ;
Song, Y. ;
Fan, Y. J. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 204 (02) :1020-1032
[33]   Statistical properties of eigenvalues of an ensemble of pseudo-Hermitian Gaussian matrices [J].
Marinello, G. ;
Pato, M. P. .
PHYSICA SCRIPTA, 2019, 94 (11)
[34]   Frames, Riesz bases, and their role in Pseudo-Hermitian quantum mechanics [J].
Poumai, Khole Timothy ;
Khanna, Nikhil ;
Jarrah, A. M. ;
Kaushik, S. K. .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2025,
[35]   Pseudo-Hermitian Hamiltonians: a tale of two potentials [J].
Jones, HF ;
Mateo, J .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2005, 55 (09) :1117-1122
[36]   Exactly solvable many-body systems and pseudo-Hermitian point interactions [J].
Fei, SM .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (01) :43-49
[37]   Generalized Grassmannian coherent states for pseudo-Hermitian n-level systems [J].
Najarbashi, G. ;
Fasihi, M. A. ;
Fakhri, H. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (32)
[38]   Third-order exceptional surface in a pseudo-Hermitian superconducting circuit [J].
Zhang, Guoqiang ;
Lin, Siyan ;
Feng, Wei ;
Wang, Yu ;
Yu, Yang ;
Yang, Chuiping .
SCIENCE CHINA-INFORMATION SCIENCES, 2025, 68 (08)
[39]   Metric operator in pseudo-Hermitian quantum mechanics and the imaginary cubic potential [J].
Mostafazadeh, Ali .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (32) :10171-10188
[40]   Statistical behavior of the characteristic polynomials of a family of pseudo-Hermitian Gaussian matrices [J].
Marinello, G. ;
Pato, M. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (37)