Quantization of pseudo-hermitian systems

被引:0
作者
Baldiotti, M. C. [1 ]
Fresneda, R. [2 ]
机构
[1] Londrina State Univ UEL, Phys Dept, Londrina, Brazil
[2] Fed Univ ABC, Ctr Math Computat & Cognit, UFABC, Santo Andre, Brazil
基金
巴西圣保罗研究基金会;
关键词
canonical quantization; pseudo-hermitian operators; pseudoclassical theory; Heisenberg interaction; PT-SYMMETRY; HAMILTONIANS;
D O I
10.1088/1751-8121/ad5bc9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work is a generalization of (Raimundo et al 2021 Phys. Rev. A 103 022201) to Grassmann algebras of arbitrary dimensions. Here we present a covariant quantization scheme for pseudoclassical theories focused on non-hermitian quantum mechanics. The quantization maps canonically related pseudoclassical theories to equivalent quantum realizations in arbitrary dimensions. We apply the formalism to the problem of two coupled spins with Heisenberg interaction.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Pseudo-Hermitian quantum mechanics with unbounded metric operators
    Mostafazadeh, Ali
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1989):
  • [22] THE METRIC OPERATORS FOR PSEUDO-HERMITIAN HAMILTONIAN
    Wang, Wen-Hua
    Chen, Zheng-Li
    Li, Wei
    [J]. ANZIAM JOURNAL, 2023, 65 (03) : 215 - 228
  • [23] Pseudo-Hermitian continuous-time quantum walks
    Salimi, S.
    Sorouri, A.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (27)
  • [24] Dynamical invariants for pseudo-Hermitian Hamiltonians
    Simeonov, Lachezar S.
    Vitanov, Nikolay V.
    [J]. PHYSICAL REVIEW A, 2016, 93 (01)
  • [25] Which metrics are consistent with a given pseudo-hermitian matrix?
    Feinberg, Joshua
    Znojil, Miloslav
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (01)
  • [26] On Bell-Like Inequalities and Pseudo-Hermitian Operators
    Fei, Shao-Ming
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (04) : 1126 - 1133
  • [27] Quantum phase transition in a pseudo-Hermitian Dicke model
    Deguchi, Tetsuo
    Ghosh, Pijush K.
    [J]. PHYSICAL REVIEW E, 2009, 80 (02):
  • [28] On integrability and pseudo-Hermitian systems with spin-coupling point interactions
    Fei, SM
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 2005, 55 (09) : 1085 - 1090
  • [29] Pseudo-Hermitian potential models with PT symmetry
    Jia, CS
    Li, SC
    Li, Y
    Sun, LT
    [J]. PHYSICS LETTERS A, 2002, 300 (2-3) : 115 - 121
  • [30] Constructing Exactly Solvable Pseudo-hermitian Many-Particle Quantum Systems by Isospectral Deformation
    Ghosh, Pijush K.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (04) : 1143 - 1151