Stone-Wales defective C60 fullerene for hydrogen storage

被引:4
作者
EL-Barbary, A. A. [1 ]
Shabi, A. H. [1 ]
机构
[1] Jazan Univ, Coll Sci, Dept Phys Sci, Phys Div, POB 114, Jazan 45142, Saudi Arabia
关键词
Hydrogen storage; DFT; Adsorption isotherm; Desorption temperature; Intermediate hydrogen binding energy; Cavity of SW defectiveC60; DENSITY-FUNCTIONAL THEORY; WALLED CARBON NANOTUBES; BINDING-ENERGY; INDUCED ENHANCEMENT; CRYSTAL-STRUCTURE; POTENTIAL-ENERGY; C-60; FULLERENE; BOND LENGTHS; H-2; MOLECULE; THIN-FILMS;
D O I
10.1016/j.ijhydene.2024.05.240
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen energy is one of promising non-polluting and renewable energy sources. In this paper, we present a first principal study of hydrogen storage in pure C60 fullerene cage and Stone-Wales (SW) defective C60 cages using density functional theory (DFT) with applying both the exchange functional B3LYP and the dispersion correction wb97xd at 6-31+g(d,2p) basis set. In addition, the counterpoise correction is applied, and the basis set superposition error is calculated. The calculations underscore that the hydrogenation binding energy of C60 cages occurs through an endothermal process for C60Hin with a hydrogen binding energy of 0.09 eV and through an exothermal process for C60Hout, C60SW66Hout, and C60SW65Hout, cages with hydrogen binding energies of -2.17 eV, -2.96 eV, and -2.20 eV, respectively. Remarkably, for the first time, the intermediate hydrogen binding energy is found inside C60SW66Hin fullerene, and C60SW65Hin fullerene cages with energies of -0.26 eV and -0.81 eV, respectively. The hydrogen adsorption inside the cavity of C60SW66 fullerene cage is thermodynamically possible below 289.8 K and entire pressure range considered. Our results highlight, for the first time, that the endohedral cavity of C60SW66 is a promising new medium for hydrogen storage due to its binding energies (-0.26 eV) and its hydrogen storage weight percentage (5.3%) that are close to the optimal conditions specified by DOE for commercial use. In addition, this study opens up a new discovery of Stone-Wales defective C60 fullerene for further endohedral cavity applications.
引用
收藏
页码:155 / 164
页数:10
相关论文
共 50 条
[41]   The effect of C60 additive on magnesium hydride for hydrogen storage [J].
Alsabawi, K. ;
Webb, T. A. ;
Gray, E. MacA ;
Webb, C. J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (33) :10508-10515
[42]   State of hydrogen molecules confined in C60 fullerene and carbon nanocapsule structures [J].
Ren, YX ;
Ng, TY ;
Liew, KM .
CARBON, 2006, 44 (03) :397-406
[43]   Hydrogen-mediated Stone-Wales isomerization of dicyclopenta[de,mn]anthracene [J].
Sonja Stanković ;
Svetlana Marković ;
Ivan Gutman ;
Silva Sretenović .
Journal of Molecular Modeling, 2010, 16 :1519-1527
[44]   Hydrogen-mediated Stone-Wales isomerization of dicyclopenta[de,mn]anthracene [J].
Stankovic, Sonja ;
Markovic, Svetlana ;
Gutman, Ivan ;
Sretenovic, Silva .
JOURNAL OF MOLECULAR MODELING, 2010, 16 (09) :1519-1527
[45]   A Density Functional Theory Study of Porphyrin-Pyridine-Fullerene Triad ZnTPP•Py•C60 [J].
Basiuk, Vladimir A. ;
Annelines-Sarria, Oscar ;
Kolokoltsev, Yevgeniy .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2010, 7 (11) :2322-2330
[46]   Interaction of Short Homopeptides of Glycine and L-Alanine with Fullerene C60 [J].
Basiuk, Vladimir A. ;
Bassiouk, Maria .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2011, 8 (02) :243-252
[47]   Processes of Aggregation of Fullerene C60 in Polymer–Fullerene Composites [J].
A. A. Bogdanov .
Physics of the Solid State, 2020, 62 :354-358
[48]   Characterization of combustion fullerene soot, C60, and mixed fullerene [J].
Zhu, WZ ;
Miser, DE ;
Chan, WG ;
Hajaligol, MR .
CARBON, 2004, 42 (8-9) :1463-1471
[49]   Hydrogen storage analysis of fullerene and defective fullerenes: The first experimental study [J].
Dogan, Mehmet ;
Kalafat, Mehmet Yasar ;
Kizilduman, Berna Kocer ;
Bicil, Zeynep ;
Turhan, Yasemin ;
Yanmaz, Ersin ;
Duman, Betuel .
FUEL, 2025, 390
[50]   1,3-Dipolar Cycloaddition in Stone-Wales Defective Carbon Nanotubes: A Computational Study [J].
Naderi, Fereshteh ;
Ghafouri, Reza ;
Ektefa, Fatemeh .
JOURNAL OF CLUSTER SCIENCE, 2015, 26 (02) :581-594