Spectral entropy as a measure of the metaproteome complexity

被引:0
|
作者
Duan, Haonan [1 ,2 ]
Ning, Zhibin [1 ,2 ]
Zhang, Ailing [1 ,2 ]
Figeys, Daniel [1 ,2 ]
机构
[1] Univ Ottawa, Fac Med, Sch Pharmaceut Sci, Ottawa, ON K1H 8M5, Canada
[2] Univ Ottawa, Ottawa Inst Syst Biol, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
bioinformatics; metaproteomics; spectral entropy; SEARCH; PLATFORM; IDENTIFICATIONS;
D O I
10.1002/pmic.202300570
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The diversity and complexity of the microbiome's genomic landscape are not always mirrored in its proteomic profile. Despite the anticipated proteomic diversity, observed complexities of microbiome samples are often lower than expected. Two main factors contribute to this discrepancy: limitations in mass spectrometry's detection sensitivity and bioinformatics challenges in metaproteomics identification. This study introduces a novel approach to evaluating sample complexity directly at the full mass spectrum (MS1) level rather than relying on peptide identifications. When analyzing under identical mass spectrometry conditions, microbiome samples displayed significantly higher complexity, as evidenced by the spectral entropy and peptide candidate entropy, compared to single-species samples. The research provides solid evidence for the complexity of microbiome in proteomics indicating the optimization potential of the bioinformatics workflow.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Optimization of piano tuning by means of spectral entropy minimization
    Szwajcowski, Adam
    Pilch, Adam
    APPLIED ACOUSTICS, 2020, 166
  • [22] Intelligent Seizure Prediction System Based on Spectral Entropy
    Rusnac, Ana-Luiza
    Grigore, Ovidiu
    2019 INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS (ISSCS 2019), 2019,
  • [23] Identification of Network Topology Variations Based on Spectral Entropy
    Su, Housheng
    Chen, Dan
    Pan, Gui-Jun
    Zeng, Zhigang
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (10) : 10468 - 10478
  • [24] Why complexity and entropy matter: Information, posttranslational modifications, and assay fidelity
    Sherman, Jamie
    Molloy, Mark P.
    Burlingame, Alma L.
    PROTEOMICS, 2012, 12 (08) : 1147 - 1150
  • [25] Evaluation of spectral entropy monitor with different concentrations of isoflurane in Horses
    Navarrete-Calvo, R.
    Morgaz, J.
    Ruiz-Lopez, P.
    Gomez-Villamandos, R. J.
    Dominguez, J. M.
    Quiros-Carmona, S.
    Granados, M. M.
    JOURNAL OF EQUINE VETERINARY SCIENCE, 2025, 147
  • [26] Using spectral entropy and bernoulli map to handle concept drift
    Meneses Chikushi, Rohgi Toshio
    Maior de Barros, Roberto Souto
    Monte da Silva, Marilu Gomes N.
    Ferreira Maciel, Bruno Iran
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 167
  • [27] Spectral entropy criteria for structural segmentation in genomic DNA sequences
    Chechetkin, VR
    Lobzin, V
    PHYSICS LETTERS A, 2004, 328 (01) : 79 - 86
  • [28] Wavelet spectral entropy for indication of epileptic seizure in extracranial EEG
    Li, Xiaoli
    NEURAL INFORMATION PROCESSING, PT 3, PROCEEDINGS, 2006, 4234 : 66 - 73
  • [29] Quality Estimation of Noisy Speech Using Spectral Entropy Distance
    Mittag, Gabriel
    Moeller, Sebastian
    2019 26TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS (ICT), 2019, : 197 - 201
  • [30] Research on similarity retrieval method based on mass spectral entropy
    Wu, Li-Ping
    Yong, Li
    Cheng, Xiang
    Zhou, Yang
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2024, 22 (06)