Active flow control of a turbulent separation bubble through deep reinforcement learning

被引:12
作者
Font, Bernat [1 ,2 ]
Alcantara-Avila, Francisco [3 ]
Rabault, Jean
Vinuesa, Ricardo [3 ]
Lehmkuhl, Oriol [1 ]
机构
[1] Barcelona Supercomp Ctr, Barcelona 08034, Spain
[2] Delft Univ Technol, Fac Mech Engn, Delft, Netherlands
[3] KTH Royal Inst Technol, FLOW, Engn Mech, Stockholm, Sweden
来源
5TH MADRID TURBULENCE WORKSHOP | 2024年 / 2753卷
基金
欧洲研究理事会;
关键词
DIRECT NUMERICAL-SIMULATION; BOUNDARY-LAYERS; SYNTHETIC JET;
D O I
10.1088/1742-6596/2753/1/012022
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The control efficacy of classical periodic forcing and deep reinforcement learning (DRL) is assessed for a turbulent separation bubble (TSB) at Re-tau = 180 on the upstream region before separation occurs. The TSB can resemble a separation phenomenon naturally arising in wings, and a successful reduction of the TSB can have practical implications in the reduction of the aviation carbon footprint. We find that the classical zero-net-mas-flux (ZNMF) periodic control is able to reduce the TSB by 15.7%. On the other hand, the DRL-based control achieves 25.3% reduction and provides a smoother control strategy while also being ZNMF. To the best of our knowledge, the current test case is the highest Reynolds-number flow that has been successfully controlled using DRL to this date. In future work, these results will be scaled to well-resolved large-eddy simulation grids. Furthermore, we provide details of our open-source CFD-DRL framework suited for the next generation of exascale computing machines.
引用
收藏
页数:18
相关论文
共 53 条
[21]   Direct numerical simulation of a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation [J].
Kitsios, V. ;
Sekimoto, A. ;
Atkinson, C. ;
Sillero, J. A. ;
Borrell, G. ;
Gungor, A. G. ;
Jimenez, J. ;
Soria, J. .
JOURNAL OF FLUID MECHANICS, 2017, 829 :392-419
[22]   Direct numerical simulation of a self-similar adverse pressure gradient turbulent boundary layer [J].
Kitsios, V. ;
Atkinson, C. ;
Sillero, J. A. ;
Borrell, G. ;
Gungor, A. G. ;
Jimenez, J. ;
Soria, J. .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2016, 61 :129-136
[23]  
Kurz M., 2022, Softw. Impacts, V14
[24]   Deep reinforcement learning for turbulence modeling in large eddy simulations [J].
Kurz, Marius ;
Offenhaeuser, Philipp ;
Beck, Andrea .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2023, 99
[25]  
Lehmkuhl Oriol, 2020, Journal of Physics: Conference Series, V1522, DOI 10.1088/1742-6596/1522/1/012017
[26]   Simulation of slot and round synthetic jets in the context of boundary-layer separation control [J].
Leschziner, Michael A. ;
Lardeau, Sylvain .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1940) :1495-1512
[27]   Reinforcement-learning-based control of confined cylinder wakes with stability analyses [J].
Li, Jichao ;
Zhang, Mengqi .
JOURNAL OF FLUID MECHANICS, 2021, 932
[28]   Human-level control through deep reinforcement learning [J].
Mnih, Volodymyr ;
Kavukcuoglu, Koray ;
Silver, David ;
Rusu, Andrei A. ;
Veness, Joel ;
Bellemare, Marc G. ;
Graves, Alex ;
Riedmiller, Martin ;
Fidjeland, Andreas K. ;
Ostrovski, Georg ;
Petersen, Stig ;
Beattie, Charles ;
Sadik, Amir ;
Antonoglou, Ioannis ;
King, Helen ;
Kumaran, Dharshan ;
Wierstra, Daan ;
Legg, Shane ;
Hassabis, Demis .
NATURE, 2015, 518 (7540) :529-533
[29]   A parametric study of adverse pressure gradient turbulent boundary layers [J].
Monty, J. P. ;
Harun, Z. ;
Marusic, I. .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2011, 32 (03) :575-585
[30]   Automating turbulence modelling by multi-agent reinforcement learning [J].
Novati, Guido ;
de Laroussilhe, Hugues Lascombes ;
Koumoutsakos, Petros .
NATURE MACHINE INTELLIGENCE, 2021, 3 (01) :87-96