Null Space Matters: Range-Null Decomposition for Consistent Multi-Contrast MRI Reconstruction

被引:0
|
作者
Chen, Jiacheng [1 ]
Jiang, Jiawei [1 ]
Wu, Fei [1 ]
Zheng, Jianwei [1 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Consistency and interpretability have long been the critical issues in MRI reconstruction. While interpretability has been dramatically improved with the employment of deep unfolding networks (DUNs), current methods still suffer from inconsistencies and generate inferior anatomical structure. Especially in multi-contrast scenes, different imaging protocols often exacerbate the concerned issue. In this paper, we propose a range-null decomposition-assisted DUN architecture to ensure consistency while still providing desirable interpretability. Given the input decomposed, we argue that the inconsistency could be analytically relieved by feeding solely the null-space component into proximal mapping, while leaving the range-space counterpart fixed. More importantly, a correlation decoupling scheme is further proposed to narrow the information gap for multi-contrast fusion, which dynamically borrows isotropic features from the opponent while maintaining the modality-specific ones. Specifically, the two features are attached to different frequencies and learned individually by the newly designed isotropy encoder and anisotropy encoder. The former strives for the contrast-shared information, while the latter serves to capture the contrast-specific features. The quantitative and qualitative results show that our proposal outperforms most cutting-edge methods by a large margin. Codes will be released on https://github.com/chenjiachengzzz/RNU.
引用
收藏
页码:1081 / 1090
页数:10
相关论文
共 48 条
  • [1] Fast multi-contrast MRI reconstruction
    Huang, Junzhou
    Chen, Chen
    Axel, Leon
    MAGNETIC RESONANCE IMAGING, 2014, 32 (10) : 1344 - 1352
  • [2] Fast Multi-contrast MRI Reconstruction
    Huang, Junzhou
    Chen, Chen
    Axel, Leon
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2012, PT I, 2012, 7510 : 281 - 288
  • [3] Deep unregistered multi-contrast MRI reconstruction
    Liu, Xinwen
    Wang, Jing
    Jin, Jin
    Li, Mingyan
    Tang, Fangfang
    Crozier, Stuart
    Liu, Feng
    MAGNETIC RESONANCE IMAGING, 2021, 81 : 33 - 41
  • [4] Multi-Image Reconstruction in Multi-Contrast MRI
    Ozbey, Muzaffer
    Cukur, Tolga
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [5] JOINT OPTIMIZATION OF K-SPACE SAMPLING AND RECONSTRUCTION FOR MULTI-CONTRAST MRI
    Geng, Jianing
    Zhou, Zijian
    Qi, Haikun
    Hu, Peng
    IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024, 2024,
  • [6] Coupled Dictionary Learning for Multi-Contrast MRI Reconstruction
    Song, Pingfan
    Weizman, Lior
    Mota, Joao F. C.
    Eldar, Yonina C.
    Rodrigues, Miguel R. D.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (03) : 621 - 633
  • [7] COUPLED DICTIONARY LEARNING FOR MULTI-CONTRAST MRI RECONSTRUCTION
    Song, Pingfan
    Weizman, Lior
    Mota, Joao F. C.
    Eldar, Yonina C.
    Rodrigues, Miguel R. D.
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2880 - 2884
  • [8] Fast Preconditioning for Accelerated Multi-contrast MRI Reconstruction
    Li, Ruoyu
    Li, Yeqing
    Fang, Ruogu
    Zhang, Shaoting
    Pan, Hao
    Huang, Junzhou
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT II, 2015, 9350 : 700 - 707
  • [9] Decomposition-Based Variational Network for Multi-Contrast MRI Super-Resolution and Reconstruction
    Lei, Pengcheng
    Fang, Faming
    Zhang, Guixu
    Zeng, Tieyong
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21239 - 21249
  • [10] FAST RECONSTRUCTION FOR ACCELERATED MULTI-SLICE MULTI-CONTRAST MRI
    Chatnuntawech, Itthi
    Bilgic, Berkin
    Martin, Adrian
    Setsompop, Kawin
    Adalsteinsson, Elfar
    2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2015, : 335 - 338