Enabling Alarm-Based Fault Prediction for Smart Meters in District Heating Systems: A Danish Case Study
被引:0
|
作者:
Sondergaard, Henrik Alexander Nissen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Denmark, Maersk Mc Kinney Moeller Inst, Fac Engn, SDU Ctr Energy Informat, Campusvej 55, DK-5230 Odense, DenmarkUniv Southern Denmark, Maersk Mc Kinney Moeller Inst, Fac Engn, SDU Ctr Energy Informat, Campusvej 55, DK-5230 Odense, Denmark
Sondergaard, Henrik Alexander Nissen
[1
]
Shaker, Hamid Reza
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Denmark, Maersk Mc Kinney Moeller Inst, Fac Engn, SDU Ctr Energy Informat, Campusvej 55, DK-5230 Odense, DenmarkUniv Southern Denmark, Maersk Mc Kinney Moeller Inst, Fac Engn, SDU Ctr Energy Informat, Campusvej 55, DK-5230 Odense, Denmark
Shaker, Hamid Reza
[1
]
Jorgensen, Bo Norregaard
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Denmark, Maersk Mc Kinney Moeller Inst, Fac Engn, SDU Ctr Energy Informat, Campusvej 55, DK-5230 Odense, DenmarkUniv Southern Denmark, Maersk Mc Kinney Moeller Inst, Fac Engn, SDU Ctr Energy Informat, Campusvej 55, DK-5230 Odense, Denmark
Jorgensen, Bo Norregaard
[1
]
机构:
[1] Univ Southern Denmark, Maersk Mc Kinney Moeller Inst, Fac Engn, SDU Ctr Energy Informat, Campusvej 55, DK-5230 Odense, Denmark
来源:
SMART CITIES
|
2024年
/
7卷
/
03期
关键词:
fault prediction;
machine learning;
district heating;
consumer installations;
smart meter;
D O I:
10.3390/smartcities7030048
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
District heating companies utilize smart meters that generate alarms that indicate faults in their sensors and installations. If these alarms are not tended to, the data cannot be trusted, and the applications that utilize them will not perform properly. Currently, smart meter data are mostly used for billing, and the district heating company is obligated to ensure the data quality. Here, retrospective correction of data is possible using the alarms; however, identification of sensor problems earlier can help improve the data quality. This paper is undertaken in collaboration with a district heating company in which not all of these alarms are tended to. This is due to various barriers and misconceptions. A shift in perspective must happen, both to utilize the current alarms more efficiently and to permit the incorporation of predictive capabilities of alarms to enable smart solutions in the future and improve data quality now. This paper proposes a prediction framework for one of the alarms in the customer installation. The framework can predict sensor faults to a high degree with a precision of 88% and a true positive rate of 79% over a prediction horizon of 24 h. The framework uses a modified definition of an alarm and was tested using a selection of machine learning methods with the optimization of hyperparameters and an investigation into prediction horizons. To the best of our knowledge, this is the first instance of such a methodology.
机构:
Univ Innsbruck, Unit Energy Efficient Bldg, Technikerstr 13, A-6020 Innsbruck, AustriaUniv Innsbruck, Unit Energy Efficient Bldg, Technikerstr 13, A-6020 Innsbruck, Austria
Thuer, Alexander
Streicher, Wolfgang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Innsbruck, Unit Energy Efficient Bldg, Technikerstr 13, A-6020 Innsbruck, AustriaUniv Innsbruck, Unit Energy Efficient Bldg, Technikerstr 13, A-6020 Innsbruck, Austria
机构:
Harbin Inst Technol, Sch Municipal & Environm Engn, Harbin 150090, Peoples R ChinaHarbin Inst Technol, Sch Municipal & Environm Engn, Harbin 150090, Peoples R China
Wang, Peng
Sipila, Kari
论文数: 0引用数: 0
h-index: 0
机构:
Tech Res Ctr Finland, Smart Energy & Syst Integrat, FI-02150 Espoo, FinlandHarbin Inst Technol, Sch Municipal & Environm Engn, Harbin 150090, Peoples R China