Self-powered microbial inactivation and particle removal in water by gelatin-based triboelectric nanogenerators

被引:5
作者
Menge, Habtamu Gebeyehu [1 ]
Lim, Seungeun [2 ]
Choi, Shin Sik [2 ]
Cho, Chungyeon [3 ]
Park, Yong Tae [1 ]
机构
[1] Myongji Univ, Dept Mech Engn, 116 Myongji Ro, Yongin 17058, Gyeonggi, South Korea
[2] Myongji Univ, Dept Food & Nutr, 116 Myongji Ro, Yongin 17058, Gyeonggi, South Korea
[3] Wonkwang Univ, Dept Carbon Convergence Engn, 460 Iksan Daero, Iksan 54538, Jeonbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Self; -assembly; Gelatin; Triboelectric nanogenerators; Antimicrobial; Electrical stimulation; Particle removal; ELECTROPORATION; FILM; ELECTRIFICATION; ADSORPTION; CHALLENGES; OXIDE; PH;
D O I
10.1016/j.cej.2024.151844
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ultrathin, biodegradable, and biocompatible gelatin (GE) multilayer films were fabricated using eco-friendly layer -by -layer self -assembly. The electrostatic self -assembly of one species (i.e., GE) is realized using its dependence on solution pH. The electrical properties and device performance of the self -assembled GE multilayer triboelectric nanogenerators (ML-TENGs) were determined by varying the pH of the GE medium from 4 to 7. At pH 5, 110 nm-thick of the three adsorbed cycles of GE ML-TENG exhibited the highest output power density of 15.9 W/m 2 owing to its highest surface potential of 208 mV and surface roughness of 19.2 nm, resulting in an increased tendency to lose electrons and effective contact area, respectively. We successfully fabricated a selfpowered GE ML-TENG-driven electrophoretic device to eliminate toxic SiO 2 and ZnO nanoparticles from water. Furthermore, integrating a GE multilayer-TENG for electric stimulation of antibacterial devices is a promising approach and exhibits a significant inhibitory effect on gram -negative Escherichia coli ( E. coli ) and gram -positive Staphylococcus aureus strains. Finally, we demonstrated that the vertical -axis wind turbine GE freestanding film TENG electricity and graphene-based filtration system work simultaneously to attain approximately 100 % E. coli inhibition efficiency without an external power supply for the water disinfection system.
引用
收藏
页数:8
相关论文
共 64 条
[1]   Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver-copper nanoparticles [J].
Arfat, Yasir Ali ;
Ahmed, Jasim ;
Hiremath, Nikhil ;
Auras, Rafael ;
Joseph, Antony .
FOOD HYDROCOLLOIDS, 2017, 62 :191-202
[2]   Protein-based contact electrification and its uses for mechanical energy harvesting and humidity detecting [J].
Chang, Ting-Hao ;
Peng, Yin-Wei ;
Chen, Chuan-Hua ;
Chang, Ting-Wei ;
Wu, Jyh-Ming ;
Hwang, Jenn-Chang ;
Gan, Jon-Yiew ;
Lin, Zong-Hong .
NANO ENERGY, 2016, 21 :238-246
[3]   Triboelectric nanogenerator and artificial intelligence to promote precision medicine for cancer [J].
Chen, Meihua ;
Zhou, Yuankai ;
Lang, Jinyi ;
Li, Lijie ;
Zhang, Yan .
NANO ENERGY, 2022, 92
[4]   Phase transition of Mg/Al-flocs to Mg/Al-layered double hydroxides during flocculation and polystyrene nanoplastics removal [J].
Chen, Ziying ;
Huang, Zhujian ;
Liu, Junhong ;
Wu, Enya ;
Zheng, Qian ;
Cui, Lihua .
JOURNAL OF HAZARDOUS MATERIALS, 2021, 406
[5]   Self-powered active antibacterial clothing through hybrid effects of nanowire-enhanced electric field electroporation and controllable hydrogen peroxide generation [J].
Chiu, Che-Min ;
Ke, Yi-Yun ;
Chou, Ting-Mao ;
Lin, Yu-Jhen ;
Yang, Po-Kang ;
Wu, Chih-Cheng ;
Lin, Zong-Hong .
NANO ENERGY, 2018, 53 :1-10
[6]   Triboelectrification-driven microbial inactivation in a conductive cellulose filter for affordable, portable, and efficient water sterilization [J].
Cho, Sumin ;
Hanif, Zahid ;
Yun, Yeongcheol ;
Khan, Zeeshan Ahmad ;
Jang, Sunmin ;
Ra, Yoonsang ;
Lin, Zong-Hong ;
La, Moonwoo ;
Park, Sung Jea ;
Choi, Dongwhi .
NANO ENERGY, 2021, 88 (88)
[7]   Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications [J].
Choi, Dongwhi ;
Lee, Younghoon ;
Lin, Zong-Hong ;
Cho, Sumin ;
Kim, Miso ;
Ao, Chi Kit ;
Soh, Siowling ;
Sohn, Changwan ;
Jeong, Chang Kyu ;
Lee, Jeongwan ;
Lee, Minbaek ;
Lee, Seungah ;
Ryu, Jungho ;
Parashar, Parag ;
Cho, Yujang ;
Ahn, Jaewan ;
Kim, Il-Doo ;
Jiang, Feng ;
Lee, Pooi See ;
Khandelwal, Gaurav ;
Kim, Sang-Jae ;
Kim, Hyun Soo ;
Song, Hyun-Cheol ;
Kim, Minje ;
Nah, Junghyo ;
Kim, Wook ;
Menge, Habtamu Gebeyehu ;
Park, Yong Tae ;
Xu, Wei ;
Hao, Jianhua ;
Park, Hyosik ;
Lee, Ju-Hyuck ;
Lee, Dong-Min ;
Kim, Sang-Woo ;
Park, Ji Young ;
Zhang, Haixia ;
Zi, Yunlong ;
Guo, Ru ;
Cheng, Jia ;
Yang, Ze ;
Xie, Yannan ;
Lee, Sangmin ;
Chung, Jihoon ;
Oh, Il-Kwon ;
Kim, Ji-Seok ;
Cheng, Tinghai ;
Gao, Qi ;
Cheng, Gang ;
Gu, Guangqin ;
Shim, Minseob .
ACS NANO, 2023, 17 (12) :11087-11219
[8]   Layer-by-layer assembled graphene multilayers on multidimensional surfaces for highly durable, scalable, and wearable triboelectric nanogenerators [J].
Chung, Il Jun ;
Kim, Wook ;
Jang, Wonjun ;
Park, Hyun-Woo ;
Sohn, Ahrum ;
Chung, Kwun-Bum ;
Kim, Dong-Wook ;
Choi, Dukhyun ;
Park, Yong Tae .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (07) :3108-3115
[9]   Biodegradable nanofiber bone-tissue scaffold as remotely-controlled and self-powering electrical stimulator [J].
Das, Ritopa ;
Curry, Eli J. ;
Le, Thinh T. ;
Awale, Guleid ;
Liu, Yang ;
Li, Shunyi ;
Contreras, Joemart ;
Bednarz, Casey ;
Millender, Jayla ;
Xin, Xiaonan ;
Rowe, David ;
Emadi, Sharareh ;
Lo, Kevin W. H. ;
Nguyen, Thanh D. .
NANO ENERGY, 2020, 76
[10]   Realizing the potential of polyethylene oxide as new positive tribo-material: Over 40 W/m2 high power flat surface triboelectric nanogenerators [J].
Ding, Peng ;
Chen, Jinkai ;
Farooq, Umar ;
Zhao, Pengfei ;
Soin, Navneet ;
Yu, Liyang ;
Jin, Hao ;
Wang, Xiaozhi ;
Dong, Shurong ;
Luo, Jikui .
NANO ENERGY, 2018, 46 :63-72