We establish an a priori error analysis for the lowest-order Raviart-Thomas finite element discretization of the nonlinear Gross-Pitaevskii eigenvalue problem. Optimal convergence rates are obtained for the primal and dual variables as well as for the eigenvalue and energy approximations. In contrast to conforming approaches, which naturally imply upper energy bounds, the proposed mixed discretization provides a guaranteed and asymptotically exact lower bound for the ground state energy. The theoretical results are illustrated by a series of numerical experiments.
机构:
Univ Lorraine, Inst Elie Cartan Lorraine, UMR 7502, Inria Nancy Grand Est,SPHINX Team, F-54506 Vandoeuvre Les Nancy, FranceUniv Lorraine, Inst Elie Cartan Lorraine, UMR 7502, Inria Nancy Grand Est,SPHINX Team, F-54506 Vandoeuvre Les Nancy, France
Antoine, Xavier
;
论文数: 引用数:
h-index:
机构:
Levitt, Antoine
;
Tang, Qinglin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lorraine, Inst Elie Cartan Lorraine, UMR 7502, Inria Nancy Grand Est,SPHINX Team, F-54506 Vandoeuvre Les Nancy, France
Beijing Computat Sci Res Ctr, 10 East Xibeiwang Rd, Beijing 100193, Peoples R ChinaUniv Lorraine, Inst Elie Cartan Lorraine, UMR 7502, Inria Nancy Grand Est,SPHINX Team, F-54506 Vandoeuvre Les Nancy, France
机构:
Univ Lorraine, Inst Elie Cartan Lorraine, UMR 7502, Inria Nancy Grand Est,SPHINX Team, F-54506 Vandoeuvre Les Nancy, FranceUniv Lorraine, Inst Elie Cartan Lorraine, UMR 7502, Inria Nancy Grand Est,SPHINX Team, F-54506 Vandoeuvre Les Nancy, France
Antoine, Xavier
;
论文数: 引用数:
h-index:
机构:
Levitt, Antoine
;
Tang, Qinglin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lorraine, Inst Elie Cartan Lorraine, UMR 7502, Inria Nancy Grand Est,SPHINX Team, F-54506 Vandoeuvre Les Nancy, France
Beijing Computat Sci Res Ctr, 10 East Xibeiwang Rd, Beijing 100193, Peoples R ChinaUniv Lorraine, Inst Elie Cartan Lorraine, UMR 7502, Inria Nancy Grand Est,SPHINX Team, F-54506 Vandoeuvre Les Nancy, France