Decompositions of multiple controlled-Z gates on various qubit-coupling graphs

被引:0
作者
Nakanishi, Ken M. [1 ]
Satoh, Takahiko [2 ,3 ]
Todo, Synge [1 ,4 ,5 ]
机构
[1] Univ Tokyo, Inst Phys Intelligence, Tokyo 1130033, Japan
[2] Keio Univ, Quantum Comp Ctr, Yokohama, Kanagawa 2238522, Japan
[3] Keio Univ, Fac Sci & Technol, Yokohama, Kanagawa 2238522, Japan
[4] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan
[5] Univ Tokyo, Inst Solid State Phys, Kashiwa 2778581, Japan
关键词
T-DEPTH OPTIMIZATION; QUANTUM; ALGORITHM;
D O I
10.1103/PhysRevA.110.012604
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Efficient decomposition of multiqubit operators is critical in the execution of quantum algorithms. In this paper, we introduce decompositions of the multiple controlled-Z (CCZ and CCCZ) gates tailored to various qubitcoupling graphs. Specifically, we demonstrate that the CCZ gate is realized with CZ-depth 4 on a square-shaped qubit-coupling graph utilizing one auxiliary qubit. As for the CCCZ gate, previous research indicated that the decomposition requires 14 CZ gates in a fully connected topology. However, our findings reveal that only four specific qubit couplings are needed to achieve a decomposition using the same number of CZ gates, 14. Our research employs an optimization method to improve the alignment of parametrized quantum circuits with their intended quantum gates, which facilitates these efficient decompositions. This methodology is versatile and can be applied to decompose any quantum gates, not just the CCZ and CCCZ gates. These advancements in decomposing multiqubit gates, coupled with our CCZ and CCCZ decompositions, are poised to reduce quantum circuit execution times and enhance the efficiency of complex quantum algorithms in imminent quantum computing applications.
引用
收藏
页数:7
相关论文
共 51 条
[1]   Polynomial-Time T-Depth Optimization of Clifford plus T Circuits Via Matroid Partitioning [J].
Amy, Matthew ;
Maslov, Dmitri ;
Mosca, Michele .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2014, 33 (10) :1476-1489
[2]   A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits [J].
Amy, Matthew ;
Maslov, Dmitri ;
Mosca, Michele ;
Roetteler, Martin .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2013, 32 (06) :818-830
[3]  
[Anonymous], 2017, IBM announces advances to IBM quantum systems & ecosystem
[4]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[5]  
Booth KEC, 2018, P I C AUTOMAT PLAN S, P366, DOI 10.1609/icaps.v28i1.13920
[6]   Practical scheme for quantum computation with any two-qubit entangling gate [J].
Bremner, MJ ;
Dawson, CM ;
Dodd, JL ;
Gilchrist, A ;
Harrow, AW ;
Mortimer, D ;
Nielsen, MA ;
Osborne, TJ .
PHYSICAL REVIEW LETTERS, 2002, 89 (24)
[7]   Parametrically Activated Entangling Gates Using Transmon Qubits [J].
Caldwell, S. A. ;
Didier, N. ;
Ryan, C. A. ;
Sete, E. A. ;
Hudson, A. ;
Karalekas, P. ;
Manenti, R. ;
da Silva, M. P. ;
Sinclair, R. ;
Acala, E. ;
Alidoust, N. ;
Angeles, J. ;
Bestwick, A. ;
Block, M. ;
Bloom, B. ;
Bradley, A. ;
Bui, C. ;
Capelluto, L. ;
Chilcott, R. ;
Cordova, J. ;
Crossman, G. ;
Curtis, M. ;
Deshpande, S. ;
El Bouayadi, T. ;
Girshovich, D. ;
Hong, S. ;
Kuang, K. ;
Lenihan, M. ;
Manning, T. ;
Marchenkov, A. ;
Marshall, J. ;
Maydra, R. ;
Mohan, Y. ;
O'Brien, W. ;
Osborn, C. ;
Otterbach, J. ;
Papageorge, A. ;
Paquette, J. -P. ;
Pelstring, M. ;
Polloreno, A. ;
Prawiroatmodjo, G. ;
Rawat, V. ;
Reagor, M. ;
Renzas, R. ;
Rubin, N. ;
Russell, D. ;
Rust, M. ;
Scarabelli, D. ;
Scheer, M. ;
Selvanayagam, M. .
PHYSICAL REVIEW APPLIED, 2018, 10 (03)
[8]   Learning the quantum algorithm for state overlap [J].
Cincio, Lukasz ;
Subasi, Yigit ;
Sornborger, Andrew T. ;
Coles, Patrick J. .
NEW JOURNAL OF PHYSICS, 2018, 20
[9]  
Cleve R, 1998, P ROY SOC A-MATH PHY, V454, P339, DOI 10.1002/(SICI)1099-0526(199809/10)4:1<33::AID-CPLX10>3.0.CO
[10]  
2-U