Inverse Feasibility in Over-the-Air Federated Learning

被引:0
|
作者
Piotrowski, Tomasz [1 ]
Ismayilov, Rafail [2 ]
Frey, Matthias [3 ]
Cavalcante, Renato L. G. [2 ]
机构
[1] Nicolaus Copernicus Univ, PL-87100 Torun, Poland
[2] Fraunhofer Heinrich Hertz Inst, D-10587 Berlin, Germany
[3] Univ Melbourne, Parkville, Vic 3010, Australia
关键词
Compressed sensing; federated learning; inverse problems; FRAMEWORK;
D O I
10.1109/LSP.2024.3400916
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce the concept of inverse feasibility for linear forward models as a tool to enhance Over-the-Air (OTA) federated learning (FL) algorithms. Inverse feasibility is defined as an upper bound on the condition number of the forward operator as a function of its parameters. We analyze an existing OTA FL model using this definition, identify areas for improvement, and propose a new OTA FL model. Numerical experiments illustrate the main implications of the theoretical results. The proposed framework, which is based on inverse problem theory, can potentially complement existing notions of security and privacy by providing additional desirable characteristics to networks.
引用
收藏
页码:1434 / 1438
页数:5
相关论文
共 50 条
  • [1] Federated Learning Over-the-Air by Retransmissions
    Hellstrom, Henrik
    Fodor, Viktoria
    Fischione, Carlo
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (12) : 9143 - 9156
  • [2] Robust Over-the-Air Federated Learning
    Kim, Hwanjin
    Nam, Hongjae
    Love, David J.
    2024 58TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, CISS, 2024,
  • [3] Over-the-Air Federated Learning and Optimization
    Zhu, Jingyang
    Shi, Yuanming
    Zhou, Yong
    Jiang, Chunxiao
    Chen, Wei
    Letaief, Khaled B.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 16996 - 17020
  • [4] Over-the-Air Federated Learning with Retransmissions
    Hellstrom, Henrik
    Fodor, Viktoria
    Fischione, Carlo
    SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 291 - 295
  • [5] Over-the-Air Federated Learning with Enhanced Privacy
    Xue, Xiaochan
    Hasan, Moh Khalid
    Yu, Shucheng
    Kandel, Laxima Niure
    Song, Min
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4546 - 4551
  • [6] Federated Learning via Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (03) : 2022 - 2035
  • [7] COTAF: Convergent Over-the-Air Federated Learning
    Sery, Tomer
    Shlezinger, Nir
    Cohen, Kobi
    Eldar, Yonina C.
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [8] Scalable Hierarchical Over-the-Air Federated Learning
    Azimi-Abarghouyi, Seyed Mohammad
    Fodor, Viktoria
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (08) : 8480 - 8496
  • [9] Federated Learning Based on Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [10] Over-the-air Learning Rate Optimization for Federated Learning
    Xu, Chunmei
    Liu, Shengheng
    Huang, Yongming
    Huang, Chongwen
    Zhang, Zhaoyang
    2021 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2021,