Consensus Multi-view subspace clustering based on Graph Filtering

被引:1
|
作者
Chen, Mei [1 ]
Yao, Yiying [1 ]
You, Yuanyuxiu [1 ]
Liu, Boya [1 ]
Wang, Yu [1 ]
Wang, Song [1 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Elect & Informat Engn, Lanzhou 730070, Peoples R China
关键词
Multi-view subspace clustering; Graph filtering; Adaptively weighted scheme; Consensus representation;
D O I
10.1016/j.neucom.2024.127742
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view subspace clustering has attracted an increasing amount of attention because it can capture information from multiple views as well as avoid the curse of dimensionality. The existing methods cannot simultaneously achieve both the effective reduction of negative impact of noise and the high-quality consensus representation within a unified framework. To handle this issue, this paper proposes a novel Consensus Multiview subspace clustering based on Graph Filtering, named CMGF. First, CMGF learns a latent data space by using view-specific k-order filters to reduce noise and redundant information. Then, CMGF obtains the spectral embedding matrix of each view by imposing graph regularization constraint. Ultimately, to generate a consensus representation, we integrate the spectral embedding matrix of each view by using an adaptively weighted scheme. Experimental results on ten real-word datasets show that the proposed method outperforms state-of-the-art baselines significantly. Experiments also demonstrate that the graph filtering employed in CMGF enhances the smoothness of the data and improves the distinctiveness of the cluster structure.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Multi-view subspace clustering networks with local and global graph information
    Zheng, Qinghai
    Zhu, Jihua
    Ma, Yuanyuan
    Li, Zhongyu
    Tian, Zhiqiang
    NEUROCOMPUTING, 2021, 449 : 15 - 23
  • [32] Adaptive Weighted Graph Fusion Incomplete Multi-View Subspace Clustering
    Zhang, Pei
    Wang, Siwei
    Hu, Jingtao
    Cheng, Zhen
    Guo, Xifeng
    Zhu, En
    Cai, Zhiping
    SENSORS, 2020, 20 (20) : 1 - 18
  • [33] Multi-view subspace clustering based on adaptive search
    Dong, Anxue
    Wu, Zikai
    Zhang, Hongjuan
    KNOWLEDGE-BASED SYSTEMS, 2024, 289
  • [34] Sequential multi-view subspace clustering
    Lei, Fangyuan
    Li, Qin
    Neural Networks, 2022, 155 : 475 - 486
  • [35] Bipartite Graph Based Multi-View Clustering
    Li, Lusi
    He, Haibo
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (07) : 3111 - 3125
  • [36] Multi-view subspace text clustering
    Fraj, Maha
    Hajkacem, Mohamed Aymen Ben
    Essoussi, Nadia
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024, : 1583 - 1606
  • [37] Latent Multi-view Subspace Clustering
    Zhang, Changqing
    Hu, Qinghua
    Fu, Huazhu
    Zhu, Pengfei
    Cao, Xiaochun
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4333 - 4341
  • [38] Multi-View MERA Subspace Clustering
    Long, Zhen
    Zhu, Ce
    Chen, Jie
    Li, Zihan
    Ren, Yazhou
    Liu, Yipeng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3102 - 3112
  • [39] Adaptive Multi-View Subspace Clustering
    Tang Q.
    Zhang Y.
    He S.
    Zhou Z.
    Zhang, Yulong, 1600, Xi'an Jiaotong University (55): : 102 - 112
  • [40] Sketched multi-view subspace clustering
    Kadambari, Sai Kiran
    Chepuri, Sundeep Prabhakar
    SIGNAL PROCESSING, 2025, 234