Prescribed-Time High-Order Sliding Mode Control Subject to Mismatched Terms With Unknown Gain Functions

被引:4
作者
Shi, Shang [1 ,2 ]
Zhang, Guosheng [2 ]
Min, Huifang [3 ]
Xu, Shengyuan [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Internet Things, Nanjing 210003, Jiangsu, Peoples R China
[2] Hohai Univ, Coll Artificial Intelligence & Automat, Changzhou 213022, Jiangsu, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Jiangsu, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2024年 / 54卷 / 05期
基金
中国国家自然科学基金;
关键词
Convergence; Uncertainty; Dynamical systems; Control systems; Stability criteria; Circuit stability; Standards; High-order sliding mode (HOSM); mismatched terms; nonlinear systems; prescribed-time control; NEURAL-NETWORKS; BOUNDARY CONTROL; SYSTEMS; SYNCHRONIZATION; STABILIZATION; DELAYS;
D O I
10.1109/TSMC.2024.3358350
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study presents a novel prescribed-time high-order sliding mode (HOSM) controller for uncertain nonlinear systems. First, a new sliding mode dynamic system with mismatched terms is constructed. In contrast to existing HOSM algorithms, the proposed approach relaxes the assumption of gain functions imposed on the growth condition of the mismatched terms, allowing them to be unknown. Second, a novel prescribed-time HOSM controller is designed for the new sliding mode dynamic system using the concept of time-varying scaling function. Lyapunov analysis demonstrates that the proposed controller guarantees the convergence of the sliding variables to zero within a prescribed time, irrespective of the initial conditions of the system and other control parameters. Finally, simulation comparisons are provided to verify the theoretical results.
引用
收藏
页码:3184 / 3194
页数:11
相关论文
共 38 条
[1]   Boundary control of coupled reaction-diffusion processes with constant parameters [J].
Baccoli, Antonello ;
Pisano, Alessandro ;
Orlov, Yury .
AUTOMATICA, 2015, 54 :80-90
[2]   Finite-time synchronization of coupled reaction-diffusion neural systems via intermittent control [J].
Chen, Sheng ;
Song, Gongfei ;
Zheng, Bo-Chao ;
Li, Tao .
AUTOMATICA, 2019, 109
[3]   Synchronization control for reaction-diffusion FitzHugh-Nagumo systems with spatial sampled-data [J].
Chen, Sheng ;
Lim, Cheng-Chew ;
Shi, Peng ;
Lu, Zhenyu .
AUTOMATICA, 2018, 93 :352-362
[4]   Intermittent synchronization of reaction-diffusion neural networks with mixed delays via Razumikhin technique [J].
Chen, Wu-Hua ;
Liu, Lijun ;
Lu, Xiaomei .
NONLINEAR DYNAMICS, 2017, 87 (01) :535-551
[5]   Delay-independent stabilization of a class of time-delay systems via periodically intermittent control [J].
Chen, Wu-Hua ;
Zhong, Jiacheng ;
Zheng, Wei Xing .
AUTOMATICA, 2016, 71 :89-97
[6]   Robust sampled-data H∞ control of uncertain singularly perturbed systems using time-dependent Lyapunov functionals [J].
Chen, Wu-Hua ;
Wang, Zipeng ;
Wei, Dan ;
Lu, Xiaomei .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2015, 46 (15) :2832-2852
[7]  
Christofides P.D., 2001, SYS CON FDN
[8]   A Generalized System Approach to Intermittent Nonfragile Control of Stochastic Neutral Time-Varying Delay Systems [J].
Ding, Kui ;
Zhu, Quanxin ;
Li, Haidan .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (11) :7017-7026
[9]   Dissipativity-Based Control for Fuzzy Systems With Asynchronous Modes and Intermittent Measurements [J].
Dong, Shanling ;
Fang, Mei ;
Shi, Peng ;
Wu, Zheng-Guang ;
Zhang, Dan .
IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (06) :2389-2399
[10]  
Gahinet P., 1995, LMI ControlToolbox