Machine learning is an effective method to predict the 3-month prognosis of patients with acute ischemic stroke

被引:3
作者
Huang, Qing [1 ]
Shou, Guang-Li [2 ]
Shi, Bo [3 ]
Li, Meng-Lei [4 ]
Zhang, Sai [3 ]
Han, Mei [1 ]
Hu, Fu-Yong [1 ]
机构
[1] Bengbu Med Univ, Sch Publ Hlth, Bengbu, Anhui, Peoples R China
[2] Bengbu Med Univ, Affiliated Hosp 2, Dept Neurol, Bengbu, Anhui, Peoples R China
[3] Bengbu Med Univ, Sch Med Imaging, Bengbu, Anhui, Peoples R China
[4] Bengbu Med Univ, Affiliated Hosp 2, Dept Emergency Med, Bengbu, Anhui, Peoples R China
关键词
ischemic stroke; machine learning; prognosis; prediction model; random forest; RISK-FACTORS; SCALE SCORE; RECURRENCE; INFARCTION; MORTALITY; OUTCOMES;
D O I
10.3389/fneur.2024.1407152
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and objectives Upwards of 50% of acute ischemic stroke (AIS) survivors endure varying degrees of disability, with a recurrence rate of 17.7%. Thus, the prediction of outcomes in AIS may be useful for treatment decisions. This study aimed to determine the applicability of a machine learning approach for forecasting early outcomes in AIS patients.Methods A total of 659 patients with new-onset AIS admitted to the Department of Neurology of both the First and Second Affiliated Hospitals of Bengbu Medical University from January 2020 to October 2022 included in the study. The patient' demographic information, medical history, Trial of Org 10,172 in Acute Stroke Treatment (TOAST), National Institute of Health Stroke Scale (NIHSS) and laboratory indicators at 24 h of admission data were collected. The Modified Rankine Scale (mRS) was used to assess the 3-mouth outcome of participants' prognosis. We constructed nine machine learning models based on 18 parameters and compared their accuracies for outcome variables.Results Feature selection through the Least Absolute Shrinkage and Selection Operator cross-validation (Lasso CV) method identified the most critical predictors for early prognosis in AIS patients as white blood cell (WBC), homocysteine (HCY), D-Dimer, baseline NIHSS, fibrinogen degradation product (FDP), and glucose (GLU). Among the nine machine learning models evaluated, the Random Forest model exhibited superior performance in the test set, achieving an Area Under the Curve (AUC) of 0.852, an accuracy rate of 0.818, a sensitivity of 0.654, a specificity of 0.945, and a recall rate of 0.900.Conclusion These findings indicate that RF models utilizing general clinical and laboratory data from the initial 24 h of admission can effectively predict the early prognosis of AIS patients.
引用
收藏
页数:9
相关论文
共 39 条
[1]   Association of White Blood Cell Count With Clinical Outcome Independent of Treatment With Alteplase in Acute Ischemic Stroke [J].
Barow, Ewgenia ;
Quandt, Fanny ;
Cheng, Bastian ;
Gelderblom, Mathias ;
Jensen, Maerit ;
Koenigsberg, Alina ;
Boutitie, Florent ;
Nighoghossian, Norbert ;
Ebinger, Martin ;
Endres, Matthias ;
Fiebach, Jochen B. ;
Thijs, Vincent ;
Lemmens, Robin ;
Muir, Keith W. ;
Pedraza, Salvador ;
Simonsen, Claus Z. ;
Gerloff, Christian ;
Thomalla, Goetz .
FRONTIERS IN NEUROLOGY, 2022, 13
[2]   Performance of the SteatoTest, ActiTest, NashTest and FibroTest in a multiethnic cohort of patients with type 2 diabetes mellitus [J].
Bril, Fernando ;
McPhaul, Michael J. ;
Caulfield, Michael P. ;
Castille, Jean-Marie ;
Poynard, Thierry ;
Soldevila-Pico, Consuelo ;
Clark, Virginia C. ;
Firpi-Morell, Roberto J. ;
Lai, Jinping ;
Cusi, Kenneth .
JOURNAL OF INVESTIGATIVE MEDICINE, 2019, 67 (02) :303-311
[3]   MEASUREMENTS OF ACUTE CEREBRAL INFARCTION - A CLINICAL EXAMINATION SCALE [J].
BROTT, T ;
ADAMS, HP ;
OLINGER, CP ;
MARLER, JR ;
BARSAN, WG ;
BILLER, J ;
SPILKER, J ;
HOLLERAN, R ;
EBERLE, R ;
HERTZBERG, V ;
RORICK, M ;
MOOMAW, CJ ;
WALKER, M .
STROKE, 1989, 20 (07) :864-870
[4]   Classical Statistics and Statistical Learning in Imaging Neuroscience [J].
Bzdok, Danilo .
FRONTIERS IN NEUROSCIENCE, 2017, 11
[5]   Systematic Review of Machine Learning Applied to the Secondary Prevention of Ischemic Stroke [J].
Chen, Meng ;
Qian, Dongbao ;
Wang, Yixuan ;
An, Junyan ;
Meng, Ke ;
Xu, Shuai ;
Liu, Sheng ;
Sun, Meiyan ;
Li, Miao ;
Pang, Chunying .
JOURNAL OF MEDICAL SYSTEMS, 2024, 48 (01)
[6]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[7]   Thinking About the Future: A Review of Prognostic Scales Used in Acute Stroke [J].
Drozdowska, Bogna A. ;
Singh, Sarjit ;
Quinn, Terence J. .
FRONTIERS IN NEUROLOGY, 2019, 10
[8]   Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019 [J].
Feigin, Valery L. ;
Stark, Benjamin A. ;
Johnson, Catherine Owens ;
Roth, Gregory A. ;
Bisignano, Catherine ;
Abady, Gdiom Gebreheat ;
Abbasifard, Mitra ;
Abbasi-Kangevari, Mohsen ;
Abd-Allah, Foad ;
Abedi, Vida ;
Abualhasan, Ahmed ;
Abu-Rmeileh, Niveen Me ;
Abushouk, Abdelrahman, I ;
Adebayo, Oladimeji M. ;
Agarwal, Gina ;
Agasthi, Pradyumna ;
Ahinkorah, Bright Opoku ;
Ahmad, Sohail ;
Ahmadi, Sepideh ;
Salih, Yusra Ahmed ;
Aji, Budi ;
Akbarpour, Samaneh ;
Akinyemi, Rufus Olusola ;
Al Hamad, Hanadi ;
Alahdab, Fares ;
Alif, Sheikh Mohammad ;
Alipour, Vahid ;
Aljunid, Syed Mohamed ;
Almustanyir, Sami ;
Al-Raddadi, Rajaa M. ;
Salman, Rustam Al-Shahi ;
Alvis-Guzman, Nelson ;
Ancuceanu, Robert ;
Anderlini, Deanna ;
Anderson, Jason A. ;
Ansar, Adnan ;
Antonazzo, Ippazio Cosimo ;
Arabloo, Jalal ;
Arnlov, Johan ;
Artanti, Kurnia Dwi ;
Aryan, Zahra ;
Asgari, Samaneh ;
Ashraf, Tahira ;
Athar, Mohammad ;
Atreya, Alok ;
Ausloos, Marcel ;
Baig, Atif Amin ;
Baltatu, Ovidiu Constantin ;
Banach, Maciej ;
Barboza, Miguel A. .
LANCET NEUROLOGY, 2021, 20 (10) :795-820
[9]   Intelligible Models for HealthCare: Predicting the Probability of 6-Month Unfavorable Outcome in Patients with Ischemic Stroke [J].
Feng, Xiaobing ;
Hua, Yingrong ;
Zou, Jianjun ;
Jia, Shuopeng ;
Ji, Jiatong ;
Xing, Yan ;
Zhou, Junshan ;
Liao, Jun .
NEUROINFORMATICS, 2022, 20 (03) :575-585
[10]   Random forest-based prediction of stroke outcome [J].
Fernandez-Lozano, Carlos ;
Hervella, Pablo ;
Mato-Abad, Virginia ;
Rodriguez-Yanez, Manuel ;
Suarez-Garaboa, Sonia ;
Lopez-Dequidt, Iria ;
Estany-Gestal, Ana ;
Sobrino, Tomas ;
Campos, Francisco ;
Castillo, Jose ;
Rodriguez-Yanez, Santiago ;
Iglesias-Rey, Ramon .
SCIENTIFIC REPORTS, 2021, 11 (01)