CRISPR-Cas9 mediated genome editing of Kluyveromyces marxianus for iterative, multiplexed gene disruption and pathway integration

被引:0
作者
Wang, Wenliang [1 ]
Wang, Xinkai [1 ]
Tan, Yadi [1 ]
Zhao, Shuo [1 ]
Zhao, Liqian [2 ]
Zhu, Zhiwei [1 ,3 ]
机构
[1] Dalian Univ Technol, Sch Bioengn, MOE Key Lab Biointelligent Mfg, 2 Linggong Rd, Dalian 116024, Liaoning, Peoples R China
[2] Dalian Univ Technol, Sch Environm Sci & Technol, Dalian, Liaoning, Peoples R China
[3] Dalian Univ Technol, Ningbo Inst, Ningbo, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
CRISPR-Cas9; Kluyveromyces marxianus; multiplexed genome editing; pathway integration; IN-VITRO; RNA; YEAST; TRANSFORMATION; RECOMBINATION; FERMENTATION; DNA;
D O I
10.1002/bit.28736
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Kluyveromyces marxianus, a thermotolerant, fast-growing, Crabtree-negative yeast, is a promising chassis for the manufacture of various bioproducts. Although several genome editing tools are available for this yeast, these tools still require refinement to enable more convenient and efficient genetic modification. In this study, we engineered the K. marxianus NBRC 104275 strain by impairing the nonhomologous end joining and enhancing the homologous recombination machinery, which resulted in improved homology-directed repair effective on homology arms of up to 40 bp in length. Additionally, we simplified the CRISPR-Cas9 editing system by constructing a strain for integrative expression of Cas9 nuclease and plasmids bearing different selection markers for gRNA expression, thereby facilitating iterative genome editing without the need for plasmid curing. We demonstrated that tRNA was more effective than the hammerhead ribozyme for processing gRNA primary transcripts, and readily assembled tRNA-gRNA arrays were used for multiplexed editing of at least four targets. This editing tool was further employed for simultaneous scarless in vivo assembly of a 12-kb cassette from three fragments and marker-free integration for expressing a fusion variant of fatty acid synthase, as well as the integration of genes for starch hydrolysis. Together, the genome editing tool developed in this study makes K. marxianus more amenable to genetic modification and will facilitate more extensive engineering of this nonconventional yeast for chemical production.
引用
收藏
页码:3269 / 3282
页数:14
相关论文
共 45 条
[1]   A simple and rapid method for lithium acetate-mediated transformation of Kluyveromyces marxianus cells [J].
Antunes, DF ;
de Souza, CG ;
de Morais, MA .
WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2000, 16 (07) :653-654
[2]   Kluyveromyces marxianus as a microbial cell factory for lignocellulosic biomass valorisation [J].
Baptista, Marlene ;
Domingues, Lucilia .
BIOTECHNOLOGY ADVANCES, 2022, 60
[3]   RNA polymerase II-driven CRISPR-Cas9 system for efficient non-growth-biased metabolic engineering of Kluyveromyces marxianus [J].
Bever, Danielle ;
Wheeldon, Ian ;
Da Silva, Nancy .
METABOLIC ENGINEERING COMMUNICATIONS, 2022, 15
[4]   Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris [J].
Cai, Peng ;
Duan, Xingpeng ;
Wu, Xiaoyan ;
Gao, Linhui ;
Ye, Min ;
Zhou, Yongjin J. .
NUCLEIC ACIDS RESEARCH, 2021, 49 (13) :7791-7805
[5]   Metabolic engineering of yeast:: the perils of auxotrophic hosts [J].
Çakar, ZP ;
Sauer, U ;
Bailey, JE .
BIOTECHNOLOGY LETTERS, 1999, 21 (07) :611-616
[6]   Engineering Kluyveromyces marxianus as a Robust Synthetic Biology Platform Host [J].
Cernak, Paul ;
Estrela, Raissa ;
Poddar, Snigdha ;
Skerker, Jeffrey M. ;
Cheng, Ya-Fang ;
Carlson, Annika K. ;
Chen, Berling ;
Glynn, Victoria M. ;
Furlan, Monique ;
Ryan, Owen W. ;
Donnelly, Marie K. ;
Arkin, Adam P. ;
Taylor, John W. ;
Cate, Jamie H. D. .
MBIO, 2018, 9 (05)
[7]   Deletion of a KU80 homolog enhances homologous recombination in the thermotolerant yeast Kluyveromyces marxianus [J].
Choo, Jin Ho ;
Han, Changpyo ;
Kim, Jae-Young ;
Kang, Hyun Ah .
BIOTECHNOLOGY LETTERS, 2014, 36 (10) :2059-2067
[8]   Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative [J].
Dai, Zongjie ;
Huang, Mingtao ;
Chen, Yun ;
Siewers, Verena ;
Nielsen, Jens .
NATURE COMMUNICATIONS, 2018, 9
[9]   Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J].
DiCarlo, James E. ;
Norville, Julie E. ;
Mali, Prashant ;
Rios, Xavier ;
Aach, John ;
Church, George M. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (07) :4336-4343
[10]  
Fenton D. A., 2022, BIORXIV, DOI [10.1101/2022.03.25.485750, DOI 10.1101/2022.03.25.485750]