DynAMO: Multi-agent reinforcement learning for dynamic anticipatory mesh optimization with applications to hyperbolic conservation laws

被引:1
作者
Dzanic, T. [1 ]
Mittal, K. [1 ]
Kim, D. [1 ,2 ]
Yang, J. [1 ]
Petrides, S. [1 ]
Keith, B. [1 ,2 ]
Anderson, R. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
Adaptive mesh refinement; Finite element methods; Scientific machine learning; Reinforcement learning; Hyperbolic conservation laws; SUPERCONVERGENT PATCH RECOVERY; ERROR ESTIMATION; NEURAL-NETWORKS;
D O I
10.1016/j.jcp.2024.112924
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce DynAMO, a reinforcement learning paradigm for Dynamic Anticipatory Mesh Optimization. Adaptive mesh refinement is an effective tool for optimizing computational cost and solution accuracy in numerical methods for partial differential equations. However, traditional adaptive mesh refinement approaches for time -dependent problems typically rely only on instantaneous error indicators to guide adaptivity. As a result, standard strategies often require frequent remeshing to maintain accuracy. In the DynAMO approach, multi -agent reinforcement learning is used to discover new local refinement policies that can anticipate and respond to future solution states by producing meshes that deliver more accurate solutions for longer time intervals. By applying DynAMO to discontinuous Galerkin methods for the linear advection and compressible Euler equations in two dimensions, we demonstrate that this new mesh refinement paradigm can outperform conventional threshold -based strategies while also generalizing to different mesh sizes, remeshing and simulation times, and initial conditions.
引用
收藏
页数:37
相关论文
共 51 条
  • [41] Tan M., 1993, P 10 INT C MACH LEAR, P330, DOI DOI 10.1016/B978-1-55860-307-3.50049-6
  • [42] Relinearization of the error transport equations for arbitrarily high-order error estimates
    Tyson, William C.
    Yan, Gary K.
    Roy, Christopher J.
    Ollivier-Gooch, Carl F.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 397
  • [43] A higher-order error estimation framework for finite-volume CFD
    Tyson, William C.
    Roy, Christopher J.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 394 : 632 - 657
  • [44] Tyson William C., 2016, 46 AIAA FLUID DYN C
  • [45] Finite-element-based computational methods for cardiovascular fluid-structure interaction
    van de Vosse, FN
    de Hart, J
    van Oijen, CHGA
    Bessems, D
    Gunther, TWM
    Segal, A
    Wolters, BJBM
    Stijnen, JMA
    Baaijens, FPT
    [J]. JOURNAL OF ENGINEERING MATHEMATICS, 2003, 47 (3-4) : 335 - 368
  • [46] Error transport equations implementation for discontinuous Galerkin methods
    Wang, Hongyu
    Roy, Christopher J.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474
  • [47] Yang Jiachen, 2023, P MACHINE LEARNING R, V206
  • [48] Yang Jiachen, 2023, International Foundation for Autonomous Agents and Multiagent Systems, P14
  • [49] MeshingNet: A New Mesh Generation Method Based on Deep Learning
    Zhang, Zheyan
    Wang, Yongxing
    Jimack, Peter K.
    Wang, He
    [J]. COMPUTATIONAL SCIENCE - ICCS 2020, PT III, 2020, 12139 : 186 - 198
  • [50] THE SUPERCONVERGENT PATCH RECOVERY AND A-POSTERIORI ERROR-ESTIMATES .1. THE RECOVERY TECHNIQUE
    ZIENKIEWICZ, OC
    ZHU, JZ
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 33 (07) : 1331 - 1364