AI-ASSISTED STUDY OF AUXETIC STRUCTURES

被引:1
作者
Grednev, Sergej [1 ]
Steude, Henrik S. [2 ]
Bronder, Stefan [1 ]
Niggemann, Oliver [2 ]
Jung, Anne [1 ]
机构
[1] Helmut Schmidt Univ Univ Fed Armed Forces Hamburg, Protect Syst, Holstenhofweg 85, D-22043 Hamburg, Germany
[2] Helmut Schmidt Univ Univ Fed Armed Forces Hamburg, Comp Sci Mech Engn, Holstenhofweg 85, D-22043 Hamburg, Germany
来源
18TH YOUTH SYMPOSIUM ON EXPERIMENTAL SOLID MECHANICS, YSESM 2023 | 2023年 / 42卷
关键词
Auxetic structures; regression; machine learning; FOAMS;
D O I
10.14311/APP.2023.42.0032
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this study, the viability of using machine learning models to predict stress-strain curves of auxetic structures based on geometry-describing parameters is explored. Given the computational cost and time associated with generating these curves through numerical simulations, a machine learning-based approach promises a more efficient alternative. A range of machine learning models, including Artificial Neural Networks, k-Nearest Neighbors Regression, Support Vector Regression, and XGBoost, is implemented and compared regarding the aptitude to predict stress-strain curves under quasi-static compressive loading. Training data is generated using validated finite element simulations. The performance of these models is rigorously tested on data not seen during training. The Feed-Forward Artificial Neural Network emerged as the most proficient model, achieving a Mean Absolute Percentage Error of 0.367 +/- 0.230.
引用
收藏
页码:32 / 36
页数:5
相关论文
共 50 条
[41]   Towards AI-assisted digital twins for smart railways: preliminary guideline and reference architecture [J].
De Donato L. ;
Dirnfeld R. ;
Somma A. ;
De Benedictis A. ;
Flammini F. ;
Marrone S. ;
Saman Azari M. ;
Vittorini V. .
Journal of Reliable Intelligent Environments, 2023, 9 (03) :303-317
[42]   AI-Assisted Programming: Applications, User Experiences, and Neuro-Symbolic Techniques (Keynote) [J].
Gulwani, Sumit .
PROCEEDINGS OF THE 30TH ACM JOINT MEETING EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, ESEC/FSE 2022, 2022, :1-1
[43]   Does AI-Assisted Fact-Checking Disproportionately Benefit Majority Groups Online? [J].
Neumann, Terrence ;
Wolczynski, Nicholas .
PROCEEDINGS OF THE 6TH ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2023, 2023, :480-490
[44]   AI-Assisted Network-Slicing Based Next-Generation Wireless Networks [J].
Shen, Xuemin ;
Gao, Jie ;
Wu, Wen ;
Lyu, Kangjia ;
Li, Mushu ;
Zhuang, Weihua ;
Li, Xu ;
Rao, Jaya .
IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY, 2020, 1 :45-66
[45]   High-Speed Videoendoscopy and Stiffness Mapping for AI-Assisted Glottic Lesion Differentiation [J].
Pietrzak, Magdalena M. ;
Kaluza-Olszewska, Justyna ;
Niebudek-Bogusz, Ewa ;
Klepaczko, Artur ;
Pietruszewska, Wioletta .
CANCERS, 2025, 17 (08)
[46]   AI-Assisted CBCT Data Management in Modern Dental Practice: Benefits, Limitations and Innovations [J].
Urban, Renata ;
Haluzova, Sara ;
Strunga, Martin ;
Surovkova, Jana ;
Lifkova, Michaela ;
Tomasik, Juraj ;
Thurzo, Andrej .
ELECTRONICS, 2023, 12 (07)
[47]   Benefits of Machine Learning Explanations: Improved Learning in an AI-assisted Sequence Prediction Task [J].
Liang, Yu ;
Collaris, Dennis ;
Willemsen, Martijn C. ;
van Wijk, Jarke J. .
PROCEEDINGS OF THE 2025 CONFERENCE ON INTELLIGENT USER INTERFACES, IUI 2025, 2025, :231-246
[48]   Air Bubble Detection in Water Flow by Means of AI-Assisted Infrared Reflection System [J].
Moises, Ander Gracia ;
Pascual, Ignacio Vitoria ;
Gonzalez, Jose Javier Imas ;
Ruiz-Zamarreno, Carlos .
IEEE SENSORS LETTERS, 2024, 8 (10)
[49]   Does More Advice Help? The Effects of Second Opinions in AI-Assisted Decision Making [J].
Lu Z. ;
Wang D. ;
Yin M. .
Proceedings of the ACM on Human-Computer Interaction, 2024, 8 (CSCW1)
[50]   Fatigue response of auxetic structures: A review [J].
Parente, Joao M. ;
Reis, Paulo N. B. ;
Berto, Filippo .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2024, 47 (08) :2679-2699