AI-ASSISTED STUDY OF AUXETIC STRUCTURES

被引:1
作者
Grednev, Sergej [1 ]
Steude, Henrik S. [2 ]
Bronder, Stefan [1 ]
Niggemann, Oliver [2 ]
Jung, Anne [1 ]
机构
[1] Helmut Schmidt Univ Univ Fed Armed Forces Hamburg, Protect Syst, Holstenhofweg 85, D-22043 Hamburg, Germany
[2] Helmut Schmidt Univ Univ Fed Armed Forces Hamburg, Comp Sci Mech Engn, Holstenhofweg 85, D-22043 Hamburg, Germany
来源
18TH YOUTH SYMPOSIUM ON EXPERIMENTAL SOLID MECHANICS, YSESM 2023 | 2023年 / 42卷
关键词
Auxetic structures; regression; machine learning; FOAMS;
D O I
10.14311/APP.2023.42.0032
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this study, the viability of using machine learning models to predict stress-strain curves of auxetic structures based on geometry-describing parameters is explored. Given the computational cost and time associated with generating these curves through numerical simulations, a machine learning-based approach promises a more efficient alternative. A range of machine learning models, including Artificial Neural Networks, k-Nearest Neighbors Regression, Support Vector Regression, and XGBoost, is implemented and compared regarding the aptitude to predict stress-strain curves under quasi-static compressive loading. Training data is generated using validated finite element simulations. The performance of these models is rigorously tested on data not seen during training. The Feed-Forward Artificial Neural Network emerged as the most proficient model, achieving a Mean Absolute Percentage Error of 0.367 +/- 0.230.
引用
收藏
页码:32 / 36
页数:5
相关论文
共 50 条
[31]   AI-assisted reconfiguration of battery packs for cell balancing to extend driving runtime [J].
Weng, Yuqin ;
Ababei, Cristinel .
JOURNAL OF ENERGY STORAGE, 2024, 84
[32]   AI-assisted assessment of fall risk in multiple sclerosis: A systematic literature review [J].
Mehrlatifan, Somayeh ;
Molla, Razieh Yousefian .
MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2024, 92
[33]   AI-assisted prediction of particle impact deformation simulated by Material Point Method [J].
Saifoori, Saba ;
Hosseinhashemi, Somayeh ;
Alasossi, Mohammad ;
Schilde, Carsten ;
Nezamabadi, Saeid ;
Ghadiri, Mojtaba .
POWDER TECHNOLOGY, 2025, 459
[34]   State-of-the-Art: AI-Assisted Surrogate Modeling and Optimization for Microwave Filters [J].
Yu, Yang ;
Zhang, Zhen ;
Cheng, Qingsha S. ;
Liu, Bo ;
Wang, Yi ;
Guo, Cheng ;
Ye, Terry Tao .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2022, 70 (11) :4635-4651
[35]   AI-Assisted Network Traffic Prediction Without Warm-Up Periods [J].
Bolakhrif, Amin ;
Ozger, Mustafa ;
Sandberg, David ;
Cavdar, Cicek .
2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
[36]   An Integrated Approach for AI-Assisted Survey Systems Using Deterministic and Nondeterministic Models [J].
Zhang, Yilian ;
Hunt, Andrew .
APPLIED COGNITIVE COMPUTING AND ARTIFICIAL INTELLIGENCE, ACC 2024, ICAI 2024, 2025, 2251 :114-119
[37]   AI-assisted Cyber Security Exercise Content Generation: Modeling a Cyber Conflict [J].
Zacharis, Alexandros ;
Gavrila, Razvan ;
Patsakis, Constantinos ;
Ikonomou, Demosthenes .
2023 15TH INTERNATIONAL CONFERENCE ON CYBER CONFLICT, CYCON, 2023, :217-238
[38]   AI-Assisted optimisation of green concrete mixes incorporating recycled concrete aggregates [J].
Zandifaez, Peyman ;
Shamsabadi, Elyas Asadi ;
Nezhad, Ali Akbar ;
Zhou, Hongyu ;
Dias-da-Costa, D. .
CONSTRUCTION AND BUILDING MATERIALS, 2023, 391
[39]   Towards a standardized framework for AI-assisted, image-based monitoring of nocturnal insects [J].
Roy, D. B. ;
Alison, J. ;
August, T. A. ;
Belisle, M. ;
Bjerge, K. ;
Bowden, J. J. ;
Bunsen, M. J. ;
Cunha, F. ;
Geissmann, Q. ;
Goldmann, K. ;
Gomez-Segura, A. ;
Jain, A. ;
Huijbers, C. ;
Larrivee, M. ;
Lawson, J. L. ;
Mann, H. M. ;
Mazerolle, M. J. ;
McFarland, K. P. ;
Pasi, L. ;
Peters, S. ;
Pinoy, N. ;
Rolnick, D. ;
Skinner, G. L. ;
Strickson, O. T. ;
Svenning, A. ;
Teagle, S. ;
Hoye, T. T. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2024, 379 (1904)
[40]   AI-Assisted Hybrid Approach for Energy Management in IoT-Based Smart Microgrid [J].
Khan, Noman ;
Khan, Samee Ullah ;
Ullah, Fath U. Min ;
Lee, Mi Young ;
Baik, Sung Wook .
IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (21) :18861-18875