AI-ASSISTED STUDY OF AUXETIC STRUCTURES

被引:1
作者
Grednev, Sergej [1 ]
Steude, Henrik S. [2 ]
Bronder, Stefan [1 ]
Niggemann, Oliver [2 ]
Jung, Anne [1 ]
机构
[1] Helmut Schmidt Univ Univ Fed Armed Forces Hamburg, Protect Syst, Holstenhofweg 85, D-22043 Hamburg, Germany
[2] Helmut Schmidt Univ Univ Fed Armed Forces Hamburg, Comp Sci Mech Engn, Holstenhofweg 85, D-22043 Hamburg, Germany
来源
18TH YOUTH SYMPOSIUM ON EXPERIMENTAL SOLID MECHANICS, YSESM 2023 | 2023年 / 42卷
关键词
Auxetic structures; regression; machine learning; FOAMS;
D O I
10.14311/APP.2023.42.0032
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this study, the viability of using machine learning models to predict stress-strain curves of auxetic structures based on geometry-describing parameters is explored. Given the computational cost and time associated with generating these curves through numerical simulations, a machine learning-based approach promises a more efficient alternative. A range of machine learning models, including Artificial Neural Networks, k-Nearest Neighbors Regression, Support Vector Regression, and XGBoost, is implemented and compared regarding the aptitude to predict stress-strain curves under quasi-static compressive loading. Training data is generated using validated finite element simulations. The performance of these models is rigorously tested on data not seen during training. The Feed-Forward Artificial Neural Network emerged as the most proficient model, achieving a Mean Absolute Percentage Error of 0.367 +/- 0.230.
引用
收藏
页码:32 / 36
页数:5
相关论文
共 50 条
[21]   A Methodological Framework for AI-Assisted Security Assessments of Active Directory Environments [J].
Nebbione, Giuseppe ;
Calzarossa, Maria Carla .
IEEE ACCESS, 2023, 11 :15119-15130
[22]   AI-assisted analysis of content, structure, and sentiment in MOOC discussion forums [J].
Yee, Michael ;
Roy, Anindya ;
Perdue, Meghan ;
Cuevas, Consuelo ;
Quigley, Keegan ;
Bell, Ana ;
Rungta, Ahaan ;
Miyagawa, Shigeru .
FRONTIERS IN EDUCATION, 2023, 8
[23]   A New Automated AI-Assisted System to Assess Cervical Disc Herniation [J].
Fu, Su ;
Zhang, Chunlin ;
Yan, Xu ;
Li, Dongzhe ;
Wang, Yongkui ;
Dong, Chao ;
Cao, Zhengming ;
Ning, Yongming ;
Shao, Chenglong ;
Yang, Tengyue .
SPINE, 2022, 47 (16) :E536-E544
[24]   AI-assisted early screening, diagnosis, and intervention for autism in young children [J].
Zhang, Sijun .
FRONTIERS IN PSYCHIATRY, 2025, 16
[25]   An explainable AI-assisted web application in cancer drug value prediction [J].
Kothari, Sonali ;
Sharma, Shivanandana ;
Shejwal, Sanskruti ;
Kazi, Aqsa ;
D'Silva, Michela ;
Karthikeyan, M. .
METHODSX, 2024, 12
[26]   HAiVA: Hybrid AI-assisted Visual Analysis Framework to Study the Effects of Cloud Properties on Climate Patterns [J].
Hazarika, Subhashis ;
Hirasawa, Haruki ;
Kim, Sookyung ;
Ramea, Kalai ;
Cachay, Salva R. ;
Mitra, Peetak ;
Hingmire, Dipti ;
Singh, Hansi ;
Rasch, Phil J. .
2023 IEEE VISUALIZATION AND VISUAL ANALYTICS, VIS, 2023, :226-230
[27]   Is AI-assisted active learning software able to reliably speed-up systematic literature reviews in rheumatology? A real-time comparison of AI-assisted and manual abstract selection [J].
van der Pol, Joy Ardjuna ;
Huizinga, Tom W. J. ;
Bergstra, Sytske Anne .
RMD OPEN, 2024, 10 (04)
[28]   A Framework for AI-Assisted Detection of Patent Ductus Arteriosus from Neonatal Phonocardiogram [J].
Gomez-Quintana, Sergi ;
Schwarz, Christoph E. ;
Shelevytsky, Ihor ;
Shelevytska, Victoriya ;
Semenova, Oksana ;
Factor, Andreea ;
Popovici, Emanuel ;
Temko, Andriy .
HEALTHCARE, 2021, 9 (02)
[29]   AI-ASSISTED SURVIVAL PREDICTION IN COLORECTAL CANCER: A CLINICAL DECISION SUPPORT TOOL [J].
Misirlioglu, Huseyin Koray ;
Leblebici, Asim ;
Calibasi-Kocal, Gizem ;
Ellidokuz, Hulya ;
Basbinar, Yasemin .
JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES, 2024, 8 (03) :771-778
[30]   AI-assisted reconfiguration of battery packs for cell balancing to extend driving runtime [J].
Weng, Yuqin ;
Ababei, Cristinel .
JOURNAL OF ENERGY STORAGE, 2024, 84