Fractal-fractional order stochastic chaotic model: A synchronization study

被引:6
|
作者
Sathiyaraj, T. [1 ]
Chen, Hao [2 ]
Babu, N. Ramesh [3 ]
Hassanabadi, Hassan [4 ]
机构
[1] UCSI Univ, Inst Actuarial Sci & Data Analyt, Kuala Lumpur 56000, Malaysia
[2] Zunyi Normal Univ, Sch Phys & Elect Sci, Zunyi 563006, Peoples R China
[3] Koneru Lakshmaiah Educ Fdn Deemed Univ, Dept Math, Guntur 522502, India
[4] Shahrood Univ Technol, Fac Phys, Shahrood, Iran
来源
关键词
Fractal-Fractional Derivatives (FFD); Stochastic chaotic systems; Fixed point analysis; Synchronization; NEURAL-NETWORKS; ASYMPTOTIC SYNCHRONIZATION; SYSTEMS; EQUATIONS; DRIVEN;
D O I
10.1016/j.rico.2023.100290
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This manuscript provides the existence and uniqueness of solution and synchronization of fractal dimensional fractional order stochastic chaotic systems in R-n space. Based on fractal-fractional analysis, R-n stochastic settings, fixed point rout, stability theory and suitable feedback controller, a valuable adequate useful sufficient conditions are determined for existence and uniqueness of solution and synchronization study of proposed model. We have addressed the nonlinear terms of the systems under consideration in this study by using local assumptions. The theory's findings are then validated by a numerical simulation.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Synchronization of fractional order chaotic systems
    Li, CG
    Liao, XF
    Yu, JB
    PHYSICAL REVIEW E, 2003, 68 (06):
  • [22] Qualitative analysis of fractal-fractional order COVID-19 mathematical model with case study of Wuhan
    Ali, Zeeshan
    Rabiei, Faranak
    Shah, Kamal
    Khodadadi, Touraj
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (01) : 477 - 489
  • [23] Synchronization Problem of a Novel Fractal-Fractional Orders' Hyperchaotic Finance System
    Zhang, Yaru
    Du, Yingxue
    Mathematical Problems in Engineering, 2021, 2021
  • [24] Modified projective synchronization of stochastic fractional order chaotic systems with uncertain parameters
    Shao-Juan Ma
    Qiong Shen
    Jing Hou
    Nonlinear Dynamics, 2013, 73 : 93 - 100
  • [25] Modified projective synchronization of stochastic fractional order chaotic systems with uncertain parameters
    Ma, Shao-Juan
    Shen, Qiong
    Hou, Jing
    NONLINEAR DYNAMICS, 2013, 73 (1-2) : 93 - 100
  • [26] SYNCHRONIZATION AND GENERALIZED SYNCHRONIZATION OF FRACTIONAL ORDER CHAOTIC SYSTEMS
    Wang, Xing-Yuan
    Zhang, Jing
    MODERN PHYSICS LETTERS B, 2009, 23 (13): : 1695 - 1714
  • [27] Synchronization Problem of a Novel Fractal-Fractional Orders' Hyperchaotic Finance System
    Zhang, Yaru
    Du, Yingxue
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [28] A comprehensive mathematical analysis of fractal-fractional order nonlinear re-infection model
    Eiman
    Shah, Kamal
    Sarwar, Muhammad
    Abdeljawad, Thabet
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 103 : 353 - 365
  • [29] Stochastic dynamics of the fractal-fractional Ebola epidemic model combining a fear and environmental spreading mechanism
    Rashid, Saima
    Jarad, Fahd
    AIMS MATHEMATICS, 2022, 8 (02): : 3634 - 3675
  • [30] A FRACTAL-FRACTIONAL MODEL ON IMPACT STRESS OF CRUSHER DRUM
    Shang, Chu-Han
    Yi, Huai -An
    THERMAL SCIENCE, 2023, 27 (3A): : 2119 - 2125