Illuminating mitochondrial translation through mouse models

被引:0
作者
Hughes, Laetitia A. [1 ,2 ,3 ,4 ]
Rackham, Oliver [1 ,2 ,3 ,4 ,5 ,6 ]
Filipovska, Aleksandra [1 ,3 ,4 ,7 ]
机构
[1] Perth Childrens Hosp, Telethon Kids Inst, Northern Entrance, 15 Hosp Ave, Nedlands, WA 6009, Australia
[2] Harry Perkins Inst Med Res, 6 Verdun St, Nedlands, WA 6009, Australia
[3] ARC Ctr Excellence Synthet Biol, 35 Stirling Highway, Crawley, WA 6009 USA
[4] Univ Western Australia, Crawley, WA 6009, Australia
[5] Curtin Univ, Curtin Med Sch, Kent St, Bentley, WA 6102, Australia
[6] Curtin Univ, Curtin Hlth Innovat Res Inst, Kent St, Bentley, WA 6102, Australia
[7] Monash Univ, Monash Biomed Discovery Inst, Dept Biochem & Mol Biol, 19 Innovat Walk, Clayton, Vic 3168, Australia
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
mitochondria; gene expression; protein synthesis; animal models; LARGE RIBOSOMAL-SUBUNIT; TERMINATION CODONS UAA; C-OXIDASE DEFICIENCY; TRANSFER-RNA; OXIDATIVE-PHOSPHORYLATION; TRANSCRIPTION FACTOR; GROWTH-RETARDATION; INSULIN-SECRETION; RECYCLING FACTOR; STRESS-RESPONSE;
D O I
10.1093/hmg/ddae020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondria are hubs of metabolic activity with a major role in ATP conversion by oxidative phosphorylation (OXPHOS). The mammalian mitochondrial genome encodes 11 mRNAs encoding 13 OXPHOS proteins along with 2 rRNAs and 22 tRNAs, that facilitate their translation on mitoribosomes. Maintaining the internal production of core OXPHOS subunits requires modulation of the mitochondrial capacity to match the cellular requirements and correct insertion of particularly hydrophobic proteins into the inner mitochondrial membrane. The mitochondrial translation system is essential for energy production and defects result in severe, phenotypically diverse diseases, including mitochondrial diseases that typically affect postmitotic tissues with high metabolic demands. Understanding the complex mechanisms that underlie the pathologies of diseases involving impaired mitochondrial translation is key to tailoring specific treatments and effectively targeting the affected organs. Disease mutations have provided a fundamental, yet limited, understanding of mitochondrial protein synthesis, since effective modification of the mitochondrial genome has proven challenging. However, advances in next generation sequencing, cryoelectron microscopy, and multi-omic technologies have revealed unexpected and unusual features of the mitochondrial protein synthesis machinery in the last decade. Genome editing tools have generated unique models that have accelerated our mechanistic understanding of mitochondrial translation and its physiological importance. Here we review the most recent mouse models of disease pathogenesis caused by defects in mitochondrial protein synthesis and discuss their value for preclinical research and therapeutic development.
引用
收藏
页码:R61 / R79
页数:19
相关论文
共 188 条
  • [91] Deleterious variants in CRLS1 lead to cardiolipin deficiency and cause an autosomal recessive multi-system mitochondrial disease
    Lee, Richard G.
    Balasubramaniam, Shanti
    Stentenbach, Maike
    Kralj, Tom
    McCubbin, Timothy
    Padman, Benjamin
    Smith, Janine
    Riley, Lisa G.
    Priyadarshi, Archana
    Peng, Liuyu
    Nuske, Madison R.
    Webster, Richard
    Peacock, Ken
    Roberts, Philip
    Stark, Zornitza
    Lemire, Gabrielle
    Ito, Yoko A.
    Boycott, Kym M.
    Geraghty, Michael T.
    Klinken, Jan Bert
    Ferdinandusse, Sacha
    Zhou, Ying
    Walsh, Rebecca
    Marcellin, Esteban
    Thorburn, David R.
    Rosciolli, Tony
    Fletcher, Janice
    Rackham, Oliver
    Vaz, Frederic M.
    Reid, Gavin E.
    Filipovska, Aleksandra
    [J]. HUMAN MOLECULAR GENETICS, 2022, 31 (21) : 3597 - 3612
  • [92] Cardiolipin is required for membrane docking of mitochondrial ribosomes and protein synthesis
    Lee, Richard G.
    Gao, Junjie
    Siira, Stefan J.
    Shearwood, Anne-Marie
    Ermer, Judith A.
    Hofferek, Vinzenz
    Mathews, James C.
    Zheng, Minghao
    Reid, Gavin E.
    Rackham, Oliver
    Filipovska, Aleksandra
    [J]. JOURNAL OF CELL SCIENCE, 2020, 133 (14)
  • [93] Overexpression of the mitochondrial methyltransferase TFB1M in the mouse does not impact mitoribosomal methylation status or hearing
    Lee, Seungmin
    Rose, Simon
    Metodiev, Metodi D.
    Becker, Lore
    Vernaleken, Alexandra
    Klopstock, Thomas
    Gailus-Durner, Valerie
    Fuchs, Helmut
    De Angelis, Martin Hrabe
    Douthwaite, Stephen
    Larsson, Nils-Goran
    [J]. HUMAN MOLECULAR GENETICS, 2015, 24 (25) : 7286 - 7294
  • [94] Genetic modification of survival in tissue-specific knockout mice with mitochondrial cardiomyopathy
    Li, H
    Wang, JM
    Wilhelmsson, H
    Hansson, A
    Thorén, P
    Duffy, J
    Rustin, P
    Larsson, NG
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) : 3467 - 3472
  • [95] The mitochondrial protein ERAL1 suppresses RNA virus infection by facilitating RIG-I-like receptor signaling
    Li, Siji
    Kuang, Ming
    Chen, Luoying
    Li, Yunfei
    Liu, Shengde
    Du, Hongqiang
    Cao, Lili
    You, Fuping
    [J]. CELL REPORTS, 2021, 34 (03):
  • [96] LRPPRC sustains Yap-P27-mediated cell ploidy and P62-HDAC6-mediated autophagy maturation and suppresses genome instability and hepatocellular carcinomas
    Li, Wenjiao
    Dai, Yuan
    Shi, Boyun
    Yue, Fei
    Zou, Jing
    Xu, Guibin
    Jiang, Xianhan
    Wang, Fen
    Zhou, Xinke
    Liu, Leyuan
    [J]. ONCOGENE, 2020, 39 (19) : 3879 - 3892
  • [97] Codon-reading specificities of mitochondrial release factors and translation termination at non-standard stop codons
    Lind, Christoffer
    Sund, Johan
    Aqvist, Johan
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [98] Mitochondrial Transfer RNAMet 4435A>G Mutation Is Associated With Maternally Inherited Hypertension in a Chinese Pedigree
    Liu, Yuqi
    Li, Ronghua
    Li, Zongbin
    Wang, Xin-Jian
    Yang, Li
    Wang, Shiwen
    Guan, Min-Xin
    [J]. HYPERTENSION, 2009, 53 (06) : 1083 - 1090
  • [99] Expression, purification, and mechanistic studies of bovine mitochondrial translational initiation factor 2
    Ma, JH
    Spremulli, LL
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (10) : 5805 - 5811
  • [100] MERANTE F, 1993, AM J HUM GENET, V53, P481