Illuminating mitochondrial translation through mouse models

被引:0
作者
Hughes, Laetitia A. [1 ,2 ,3 ,4 ]
Rackham, Oliver [1 ,2 ,3 ,4 ,5 ,6 ]
Filipovska, Aleksandra [1 ,3 ,4 ,7 ]
机构
[1] Perth Childrens Hosp, Telethon Kids Inst, Northern Entrance, 15 Hosp Ave, Nedlands, WA 6009, Australia
[2] Harry Perkins Inst Med Res, 6 Verdun St, Nedlands, WA 6009, Australia
[3] ARC Ctr Excellence Synthet Biol, 35 Stirling Highway, Crawley, WA 6009 USA
[4] Univ Western Australia, Crawley, WA 6009, Australia
[5] Curtin Univ, Curtin Med Sch, Kent St, Bentley, WA 6102, Australia
[6] Curtin Univ, Curtin Hlth Innovat Res Inst, Kent St, Bentley, WA 6102, Australia
[7] Monash Univ, Monash Biomed Discovery Inst, Dept Biochem & Mol Biol, 19 Innovat Walk, Clayton, Vic 3168, Australia
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
mitochondria; gene expression; protein synthesis; animal models; LARGE RIBOSOMAL-SUBUNIT; TERMINATION CODONS UAA; C-OXIDASE DEFICIENCY; TRANSFER-RNA; OXIDATIVE-PHOSPHORYLATION; TRANSCRIPTION FACTOR; GROWTH-RETARDATION; INSULIN-SECRETION; RECYCLING FACTOR; STRESS-RESPONSE;
D O I
10.1093/hmg/ddae020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondria are hubs of metabolic activity with a major role in ATP conversion by oxidative phosphorylation (OXPHOS). The mammalian mitochondrial genome encodes 11 mRNAs encoding 13 OXPHOS proteins along with 2 rRNAs and 22 tRNAs, that facilitate their translation on mitoribosomes. Maintaining the internal production of core OXPHOS subunits requires modulation of the mitochondrial capacity to match the cellular requirements and correct insertion of particularly hydrophobic proteins into the inner mitochondrial membrane. The mitochondrial translation system is essential for energy production and defects result in severe, phenotypically diverse diseases, including mitochondrial diseases that typically affect postmitotic tissues with high metabolic demands. Understanding the complex mechanisms that underlie the pathologies of diseases involving impaired mitochondrial translation is key to tailoring specific treatments and effectively targeting the affected organs. Disease mutations have provided a fundamental, yet limited, understanding of mitochondrial protein synthesis, since effective modification of the mitochondrial genome has proven challenging. However, advances in next generation sequencing, cryoelectron microscopy, and multi-omic technologies have revealed unexpected and unusual features of the mitochondrial protein synthesis machinery in the last decade. Genome editing tools have generated unique models that have accelerated our mechanistic understanding of mitochondrial translation and its physiological importance. Here we review the most recent mouse models of disease pathogenesis caused by defects in mitochondrial protein synthesis and discuss their value for preclinical research and therapeutic development.
引用
收藏
页码:R61 / R79
页数:19
相关论文
共 188 条
  • [1] A Wars2 Mutant Mouse Model Displays OXPHOS Deficiencies and Activation of Tissue-Specific Stress Response Pathways
    Agnew, Thomas
    Goldsworthy, Michelle
    Aguilar, Carlos
    Morgan, Anna
    Simon, Michelle
    Hilton, Helen
    Esapa, Chris
    Wu, Yixing
    Cater, Heather
    Bentley, Liz
    Scudamore, Cheryl
    Poulton, Joanna
    Morten, Karl J.
    Thompson, Kyle
    He, Langping
    Brown, Steve D. M.
    Taylor, Robert W.
    Bowl, Michael R.
    Cox, Roger D.
    [J]. CELL REPORTS, 2018, 25 (12): : 3315 - +
  • [2] Structural basis of mitochondrial translation
    Aibara, Shintaro
    Singh, Vivek
    Modelska, Angelika
    Amunts, Alexey
    [J]. ELIFE, 2020, 9
  • [3] Ribosome Rescue and Translation Termination at Non-Standard Stop Codons by ICT1 in Mammalian Mitochondria
    Akabane, Shiori
    Ueda, Takuya
    Nierhaus, Knud H.
    Takeuchi, Nono
    [J]. PLOS GENETICS, 2014, 10 (09):
  • [4] Mutant MRPS5 affects mitoribosomal accuracy and confers stress-related behavioral alterations
    Akbergenov, Rashid
    Duscha, Stefan
    Fritz, Ann-Kristina
    Juskeviciene, Reda
    Oishi, Naoki
    Schmitt, Karen
    Shcherbakov, Dimitri
    Teo, Youjin
    Boukari, Heithem
    Freihofer, Pietro
    Isnard-Petit, Patricia
    Oettinghaus, Bjorn
    Frank, Stephan
    Thiam, Kader
    Rehrauer, Hubert
    Westhof, Eric
    Schacht, Jochen
    Eckert, Anne
    Wolfer, David
    Bottger, Erik C.
    [J]. EMBO REPORTS, 2018, 19 (11)
  • [5] The structure of the human mitochondrial ribosome
    Amunts, Alexey
    Brown, Alan
    Toots, Jaan
    Scheres, Sjors H. W.
    Ramakrishnan, V.
    [J]. SCIENCE, 2015, 348 (6230) : 95 - 98
  • [6] The molecular basis for tissue specificity of the oxidative phosphorylation deficiencies in patients with mutations in the mitochondrial translation factor EFG1
    Antonicka, Hana
    Sasarman, Florin
    Kennaway, Nancy G.
    Shoubridge, Eric A.
    [J]. HUMAN MOLECULAR GENETICS, 2006, 15 (11) : 1835 - 1846
  • [7] Mutations in C12orf65 in Patients with Encephalomyopathy and a Mitochondrial Translation Defect
    Antonicka, Hana
    Ostergaard, Elsebet
    Sasarman, Florin
    Weraarpachai, Woranontee
    Wibrand, Flemming
    Pedersen, Anne Marie B.
    Rodenburg, Richard J.
    van der Knaap, Marjo S.
    Smeitink, Jan A. M.
    Chrzanowska-Lightowlers, Zofia M.
    Shoubridge, Eric A.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2010, 87 (01) : 115 - 122
  • [8] DARS2 protects against neuroinflammation and apoptotic neuronal loss, but is dispensable for myelin producing cells
    Aradjanski, Marijana
    Dogan, Sukru Anil
    Lotter, Stephan
    Wang, Shuaiyu
    Hermans, Steffen
    Wibom, Rolf
    Rugarli, Elena
    Trifunovic, Aleksandra
    [J]. HUMAN MOLECULAR GENETICS, 2017, 26 (21) : 4181 - 4189
  • [9] Mitochondrial Respiration Controls Lysosomal Function during Inflammatory T Cell Responses
    Baixauli, Francesc
    Acin-Perez, Rebeca
    Villarroya-Beltri, Carolina
    Mazzeo, Carla
    Nunez-Andrade, Norman
    Gabande-Rodriguez, Enrique
    Dolores Ledesma, Maria
    Blazquez, Alberto
    Angel Martin, Miguel
    Manuel Falcon-Perez, Juan
    Miguel Redondo, Juan
    Antonio Enriquez, Jose
    Mittelbrunn, Maria
    [J]. CELL METABOLISM, 2015, 22 (03) : 485 - 498
  • [10] Clinical, neuroimaging and biochemical findings in patients and patient fibroblasts expressing ten novel GFM1 mutations
    Barcia, Giulia
    Rio, Marlene
    Assouline, Zahra
    Zangarelli, Coralie
    Gueguen, Naig
    Dumas, Valerie D.
    Marcorelles, Pascale
    Schiff, Manuel
    Slama, Abdelhamid
    Barth, Magalie
    Hully, Marie
    de Lonlay, Pascale
    Munnich, Arnold
    Desguerre, Isabelle
    Bonnefont, Jean-Paul
    Steffann, Julie
    Procaccio, Vincent
    Boddaert, Nathalie
    Rotig, Agnes
    Metodiev, Metodi D.
    Ruzzenente, Benedetta
    [J]. HUMAN MUTATION, 2020, 41 (02) : 397 - 402