Development and validation of the Ex-Care BR model: a multicentre initiative for identifying Brazilian surgical patients at risk of 30-day in-hospital mortality

被引:3
作者
Passos, Savio C. [1 ,2 ]
Castro, Stela M. de Jezus [3 ]
Stahlschmidt, Adriene [1 ]
Neto, Paulo C. da Silva [1 ]
Pereira, Paulo J. Irigon [4 ]
Leal, Plinio da Cunha [5 ]
Lopes, Maristela B. [6 ]
Falca, Luiz F. dos Reis [7 ]
de Azevedo, Vera L. F. [8 ]
Lineburger, Eric B. [9 ]
Mendes, Florentino F. [10 ]
Vilela, Ramon M. [11 ]
Azi, Liana M. T. de Araujo [12 ]
Antunes, Fabricio D. [10 ,13 ]
Braz, Leandro G. [14 ]
Stefani, Luciana C. [1 ,15 ]
机构
[1] Univ Fed Rio Grande do Sul UFRGS, Sch Med, Grad Program Med Sci, Porto Alegre, RS, Brazil
[2] Hosp Clin Porto Alegre HCPA, Anesthesiol & Perioperat Med Serv, Porto Alegre, RS, Brazil
[3] Univ Fed Rio Grande do Sul UFRGS, Inst Math & Stat, Dept Stat, Porto Alegre, RS, Brazil
[4] Hosp Ernesto Dornelles, Dept Anesthesiol, Porto Alegre, RS, Brazil
[5] Hosp Sao Domingos, Sao Luis, Maranhao, Brazil
[6] Hosp Marcelino Champagnat, Curitiba, Parana, Brazil
[7] Univ Fed Sao Paulo UNIFESP, Sch Med, Dept Surg, Sao Paulo, Brazil
[8] Obras Sociais Irma Dulce, Salvador, BA, Brazil
[9] Hosp Sao Jose, Criciuma, SC, Brazil
[10] Univ Fed Ciencias Saude Porto Alegre UFCSPA, Sch Med, Dept Surg Clin, Porto Alegre, RS, Brazil
[11] Irmandade Santa Casa Misericordia Porto Alegre, Dept Anesthesiol, Porto Alegre, RS, Brazil
[12] Univ Fed Bahia UFBA, Sch Med, Dept Anesthesiol & Surg, Salvador, BA, Brazil
[13] Univ Fed Sergipe UFS, Sch Med, Dept Med, Aracaju, Brazil
[14] Univ Estadual Paulista UNESP, Sch Med, Dept Surg Specialties & Anesthesiol, Botucatu, Brazil
[15] Univ Fed Rio Grande do Sul UFRGS, Hosp Clin Porto Alegre, Sch Med, Dept Surg, Porto Alegre, RS, Brazil
关键词
mortality; perioperative death; postoperative outcome; prediction model; risk assessment; risk factors; NONCARDIAC SURGERY; DERIVATION; HEALTH;
D O I
10.1016/j.bja.2024.04.001
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Background: Surgical risk stratification is crucial for enhancing perioperative assistance and allocating resources efficiently. However, existing models may not capture the complexity of surgical care in Brazil. Using data from various healthcare settings nationwide, we developed a new risk model for 30-day in-hospital mortality (the Ex-Care BR model). Methods: A retrospective cohort study was conducted in 10 hospitals from different geographic regions in Brazil. Data were analysed using multilevel logistic regression models. Model performance was assessed using the area under the receiver operating characteristic curve (AUROC), Brier score, and calibration plots. Derivation and validation cohorts were randomly assigned. Results: A total of 107,372 patients were included, and 30-day in-hospital mortality was 2.1% (n = 2261). The final risk model comprised four predictors related to the patient and surgery (age, ASA physical status classification, surgical urgency, and surgical size), and the random effect related to hospitals. The model showed excellent discrimination (AUROC = 0.93, 95% confidence interval [CI], 0.93 - 0.94), calibration, and overall performance (Brier score = 0.017) in the derivation cohort (n = 75,094). Similar results were observed in the validation cohort (n = 32,278) (AUROC = 0.93, 95% CI, 0.92 - 0.93). Conclusions: The Ex-Care BR is the first model to consider regional and organisational peculiarities of the Brazilian surgical scene, in addition to patient and surgical factors. It is particularly useful for identifying high-risk surgical patients in situations demanding efficient allocation of limited resources. However, a thorough exploration of mortality variations among hospitals is essential for a comprehensive understanding of risk.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 44 条
  • [1] Enhanced postoperative surveillance versus standard of care to reduce mortality among adult surgical patients in Africa (ASOS-2): a cluster-randomised controlled trial
    Biccard, B. M.
    du Toit, L.
    Lesosky, M.
    Stephens, T.
    Myer, L.
    Prempeh, A. B. A.
    Kluyts, H-L
    Torborg, A.
    Omigbodun, A.
    Ademuyiwa, A.
    Ulisubisya, M.
    Hassen, M.
    Teferi, M.
    Seman, Y.
    Munlemvo, D.
    Basenero, A.
    El Adib, A. R.
    Sanogo, Z.
    Ngumi, Z.
    Fadalla, T.
    Bittaye, M.
    Samateh, A. L.
    Elfiky, M.
    Mulwafu, W.
    Msosa, V
    Lopes, L.
    Sama, H. D.
    Forget, P.
    van Straaten, D.
    Pearse, R. M.
    Vickery, N.
    Elhadi, M.
    Elfagieh, M.
    Mbwele, B.
    Mboma, L.
    Ashebir, D. Z.
    Bahta, M. T.
    Zoumenou, E.
    Hewitt-Smith, A.
    Tumukunde, J.
    Morais, A.
    Ndarukwa, P.
    Ouerdraogo, N.
    Chaibou, M. S.
    Zarouf, M.
    Gobin, V
    Coulibaly, Y.
    Iradukunda, C.
    Barendegere, V
    Smalle, I
    [J]. LANCET GLOBAL HEALTH, 2021, 9 (10): : E1391 - E1401
  • [2] Documentation of individualized preoperative risk assessment: a multi-center study
    Bloomstone, Joshua A.
    Houseman, Benjamin T.
    Sande, Evora Vicents
    Brantley, Ann
    Curran, Jessica
    Maccioli, Gerald A.
    Haddad, Tania
    Steinshouer, James
    Walker, David
    Moonesinghe, Ramani
    [J]. PERIOPERATIVE MEDICINE, 2020, 9 (01)
  • [3] Association between intra-operative cardiac arrest and country Human Development Index status: a systematic review with meta-regression analysis and meta-analysis of observational studies
    Braz, L. G.
    Einav, S.
    Heesen, M. A.
    Betini, M.
    Corrente, J. E.
    Pacchioni, M.
    Cury, J. B.
    Braz, M. G.
    Braz, J. R. C.
    [J]. ANAESTHESIA, 2021, 76 (09) : 1259 - 1273
  • [4] Post-operative intensive care: is it really necessary?
    Cashmore, R. M. J.
    Fowler, A. J.
    Pearse, R. M.
    [J]. INTENSIVE CARE MEDICINE, 2019, 45 (12) : 1799 - 1801
  • [5] Clinical Coding and Schedule Development Group, AXA Health Specialist Procedure Codes
  • [6] Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0697, 10.1186/s12916-014-0241-z, 10.1002/bjs.9736, 10.7326/M14-0698, 10.1038/bjc.2014.639, 10.1016/j.eururo.2014.11.025, 10.1136/bmj.g7594]
  • [7] Risk Prediction Model of 90-Day Mortality After Esophagectomy for Cancer
    D'Journo, Xavier Benoit
    Boulate, David
    Fourdrain, Alex
    Loundou, Anderson
    Henegouwen, Mark I. van Berge
    Gisbertz, Suzanne S.
    O'Neill, J. Robert
    Hoelscher, Arnulf
    Piessen, Guillaume
    van Lanschot, Jan
    Wijnhoven, Bas
    Jobe, Blair
    Davies, Andrew
    Schneider, Paul M.
    Pera, Manuel
    Nilsson, Magnus
    Nafteux, Philippe
    Kitagawa, Yuko
    Morse, Christopher R.
    Hofstetter, Wayne
    Molena, Daniela
    So, Jimmy Bok-Yan
    Immanuel, Arul
    Parsons, Simon L.
    Larsen, Michael Hareskov
    Dolan, James P.
    Wood, Stephanie G.
    Maynard, Nick
    Smithers, Mark
    Puig, Sonia
    Law, Simon
    Wong, Ian
    Kennedy, Andrew
    KangNing, Wang
    Reynolds, John V.
    Pramesh, C. S.
    Ferguson, Mark
    Darling, Gail
    Schroder, Wolfgang
    Bludau, Marc
    Underwood, Tim
    van Hillegersberg, Richard
    Chang, Andrew
    Cecconello, Ivan
    Ribeiro, Ulysses, Jr.
    de Manzoni, Giovanni
    Rosati, Riccardo
    Kuppusamy, MadhanKumar
    Thomas, Pascal Alexandre
    Low, Donald E.
    [J]. JAMA SURGERY, 2021, 156 (09) : 836 - 845
  • [8] Fleisher LA, 2014, CIRCULATION, V130, P2215, DOI 10.1161/CIR.0000000000000105
  • [9] The performance of risk prediction models
    Gerds, Thomas A.
    Cai, Tianxi
    Schumacher, Martin
    [J]. BIOMETRICAL JOURNAL, 2008, 50 (04) : 457 - 479
  • [10] The Surgical Mortality Probability Model Derivation and Validation of a Simple Risk Prediction Rule for Noncardiac Surgery
    Glance, Laurent G.
    Lustik, Stewart J.
    Hannan, Edward L.
    Osler, Turner M.
    Mukamel, Dana B.
    Qian, Feng
    Dick, Andrew W.
    [J]. ANNALS OF SURGERY, 2012, 255 (04) : 696 - 702