Toward methodologies for motor imagery enhancement: a tDCS-BCI study

被引:0
作者
Mora, Diego Andres Blanco [1 ]
Van Hoornweder, Sybren [2 ]
van Dun, Kim [2 ]
Verstraelen, Stefanie [2 ]
Cuypers, Koen [2 ,3 ,4 ]
Bermudez i Badia, Sergi [5 ]
Meesen, Raf [2 ,4 ]
机构
[1] Univ Lisbon, Med Fac, Ave Prof Egas Moniz MB, P-1649028 Lisbon, Portugal
[2] Univ Hasselt, Fac Rehabil Sci, REVAL Rehabil Res Ctr, Diepenbeek, Belgium
[3] Katholieke Univ Leuven, Leuven Brain Inst, Leuven, Belgium
[4] Katholieke Univ Leuven, Dept Movement Sci, Movement Control & Neuroplast Res Grp, Grp Biomed Sci, Leuven, Belgium
[5] Univ Madeira, Fac Ciencias Exatas & Engn, Funchal, Portugal
关键词
Motor imagery; tDCS; brain-computer interfaces; EEG; signal processing; neurostimulation; BRAIN-COMPUTER INTERFACE; DIRECT-CURRENT STIMULATION; MIRROR NEURON SYSTEM; STROKE; PERFORMANCE; COMMUNICATION; COORDINATION; DYNAMICS;
D O I
10.1080/2326263X.2024.2372863
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motor imagery (MI) becomes a powerful rehabilitation tool, particularly when combined with brain-computer interfaces (BCI). Therefore, methods to improve MI accuracy are a trending topic in the BCI field. Here, we examined the effects of transcranial direct current stimulation (tDCS) and MI priming on the MI signature in an EEG-based MI-BCI triple-blind study. Thirty healthy younger adults participated in this study and were designated to one of two priming groups: A bimanual tracking task and a MI task as primers for MI-BCI. During the performance of the primer task, participants received anodal and sham tDCS in two randomized sessions with a one-week wash-out period between sessions. Subsequently, participants performed an EEG-driven BCI-MI task. EEG time-frequency analyses revealed that desynchronization of the Beta Region precedes desynchronization in the Alpha Region, implying that the Beta frequency band might be best-suited to extract MI signatures as it could lead to faster MI-BCI. Contrary to our hypotheses, no effect of tDCS or priming task on EEG activity during the BCI-MI task was found. Future research should carefully consider the added value of tDCS and priming tasks BCI performance improvement. Electric field modeling studies and high-definition tDCS motor cortex stimulation might be promising avenues.
引用
收藏
页码:110 / 124
页数:15
相关论文
共 70 条
  • [1] Motor imagery based brain-computer interface: improving the EEG classification using Delta rhythm and LightGBM algorithm
    Abenna, Said
    Nahid, Mohammed
    Bajit, Abderrahim
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [2] Performance variation in motor imagery brain-computer interface: A brief review
    Ahn, Minkyu
    Jun, Sung Chan
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2015, 243 : 103 - 110
  • [3] Gamma band activity associated with BCI performance: simultaneous MEG/EEG study
    Ahn, Minkyu
    Ahn, Sangtae
    Hong, Jun H.
    Cho, Hohyun
    Kim, Kiwoong
    Kim, Bong S.
    Chang, Jin W.
    Jun, Sung C.
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2013, 7
  • [4] High Theta and Low Alpha Powers May Be Indicative of BCI-Illiteracy in Motor Imagery
    Ahn, Minkyu
    Cho, Hohyun
    Ahn, Sangtae
    Jun, Sung Chan
    [J]. PLOS ONE, 2013, 8 (11):
  • [5] Facilitating Effects of Transcranial Direct Current Stimulation on Motor Imagery Brain-Computer Interface With Robotic Feedback for Stroke Rehabilitation
    Ang, Kai Keng
    Guan, Cuntai
    Phua, Kok Soon
    Wang, Chuanchu
    Zhao, Ling
    Teo, Wei Peng
    Chen, Changwu
    Ng, Yee Sien
    Chew, Effie
    [J]. ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2015, 96 (03): : S79 - S87
  • [6] World Medical Association Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2013, 310 (20): : 2191 - 2194
  • [7] Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines
    Antal, A.
    Alekseichuk, I.
    Bikson, M.
    Brockmoeller, J.
    Brunoni, A. R.
    Chen, R.
    Cohen, L. G.
    Dowthwaite, G.
    Ellrich, J.
    Floeel, A.
    Fregni, F.
    George, M. S.
    Hamilton, R.
    Haueisen, J.
    Herrmann, C. S.
    Hummel, F. C.
    Lefaucheur, J. P.
    Liebetanz, D.
    Loo, C. K.
    McCaig, C. D.
    Miniussi, C.
    Miranda, P. C.
    Moliadze, V.
    Nitsche, M. A.
    Nowak, R.
    Padberg, F.
    Pascual-Leone, A.
    Poppendieck, W.
    Priori, A.
    Rossi, S.
    Rossini, P. M.
    Rothwell, J.
    Rueger, M. A.
    Ruffini, G.
    Schellhorn, K.
    Siebner, H. R.
    Ugawa, Y.
    Wexler, A.
    Ziemann, U.
    Hallett, M.
    Paulus, W.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2017, 128 (09) : 1774 - 1809
  • [8] Finding the Optimal Time Window for Increased Classification Accuracy during Motor Imagery
    Blanco-Mora, D.
    Aldridge, A.
    Jorge, C.
    Vourvopoulos, A.
    Figueiredo, P.
    Badia, S. Bermudez, I
    [J]. BIODEVICES: PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL 1: BIODEVICES, 2021, : 144 - 151
  • [9] Impact of age, VR, immersion, and spatial resolution on classifier performance for a MI-based BCI
    Blanco-Mora, D. A.
    Aldridge, A.
    Jorge, C.
    Vourvopoulos, A.
    Figueiredo, P.
    Badia, S. Bermudez, I
    [J]. BRAIN-COMPUTER INTERFACES, 2022, 9 (03) : 169 - 178
  • [10] NEUROPHYSIOLOGICAL EFFECTS OF AGING: A P200 ERP STUDY
    Bourisly, Ali K.
    Shuaib, Ali
    [J]. TRANSLATIONAL NEUROSCIENCE, 2018, 9 (01) : 61 - 66