Recent advances in Sb-based anodes for Li/Na/K-ion batteries and all-solid-state Li-ion batteries

被引:0
|
作者
Yoon, Jeong-Myeong [1 ,2 ]
Kim, Deok-Gyu [1 ,2 ]
Kim, Do-Hyeon [1 ,2 ]
Lee, Young-Han [1 ,2 ]
Park, Cheol-Min [1 ,2 ]
机构
[1] Kumoh Natl Inst Technol, Sch Mat Sci & Engn, 61 Daehak Ro, Gumi 39177, Gyeongbuk, South Korea
[2] Kumoh Natl Inst Technol, Dept Energy Engn Convergence, 61 Daehak Ro, Gumi 39177, Gyeongbuk, South Korea
来源
ENERGY MATERIALS | 2024年 / 4卷 / 06期
关键词
Battery; Li-ion battery; Na-ion battery; Sb-based anode; K-ion battery; all-solid-state battery; anode; HIGH-RATE CAPABILITY; HIGH-PERFORMANCE; LITHIUM-ION; CARBON NANOSHEETS; FACILE SYNTHESIS; ELECTROCHEMICAL CHARACTERISTICS; ELECTROLYTE INTERPHASE; COMPOSITE ANODES; ANTIMONY; NANOPARTICLES;
D O I
10.20517/energymater.2023.146
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In recent decades, lithium-ion batteries (LIBs) have emerged as a primary focus in the energy-storage field owing to their superior energy and power densities. However, concerns regarding the depletion of non-abundant lithium resources have prompted the exploration and development of emerging energy-storage technologies, such as sodium- (SIBs) and potassium-ion batteries (PIBs). In addition, all-solid-state LIBs (ASSLIBs) have been developed to address the issues of flammability and explosiveness associated with liquid electrolytes. Among the various alloy-based anodes, antimony (Sb) anodes exhibit high energy densities owing to their high theoretical volumetric capacities that are attributable to their high densities. However, Sb anodes exhibit poor cyclabilities owing to excessive volume changes during cycling. To mitigate this issue, researchers have investigated the use of diverse solutions, including solid electrolyte interface control, structural control, and composite/alloy formation. Herein, we review and summarize Sb-based anode materials for LIBs, SIBs, PIBs, and ASSLIBs developed over the past five years (2018-present), focusing on their reaction mechanisms and multiple approaches used to achieve optimal electrochemical performance. We anticipate that this review will provide a comprehensive database of Sb-based anodes for LIBs, SIBs, PIBs, and ASSLIBs, thereby advancing relevant studies in the energy-storage-systems field.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] Free standing aluminum nanostructures as anodes for Li-ion rechargeable batteries
    Au, Ming
    McWhorter, Scott
    Ajo, Henry
    Adams, Thad
    Zhao, Yiping
    Gibbs, John
    JOURNAL OF POWER SOURCES, 2010, 195 (10) : 3333 - 3337
  • [42] Surface chemistry of intermetallic AlSb-anodes for Li-ion batteries
    Stjerndahl, M.
    Bryngelsson, H.
    Gustafsson, T.
    Vaughey, J. T.
    Thackeray, M. M.
    Edstrom, K.
    ELECTROCHIMICA ACTA, 2007, 52 (15) : 4947 - 4955
  • [43] Electrospun Si and Si/C Fiber Anodes for Li-Ion Batteries
    Mondal, Abhishek
    Wycisk, Ryszard
    Waugh, John
    Pintauro, Peter
    BATTERIES-BASEL, 2023, 9 (12):
  • [44] High capacity Si/C nanocomposite anodes for Li-ion batteries
    Kim, IS
    Kumta, PN
    JOURNAL OF POWER SOURCES, 2004, 136 (01) : 145 - 149
  • [45] Overview of electrode advances in commercial Li-ion batteries
    Patnaik, Sarthak
    IONICS, 2024, 30 (06) : 3069 - 3090
  • [46] Influence of conductivity on the capacity retention of NiO anodes in Li-ion batteries
    Spinner, Neil S.
    Palmieri, Alessandro
    Beauregard, Nicole
    Zhang, Lichun
    Campanella, James
    Mustain, William E.
    JOURNAL OF POWER SOURCES, 2015, 276 : 46 - 53
  • [47] Highly efficient & stable Bi & Sb anodes using lithium borohydride as solid electrolyte in Li-ion batteries
    Kumari, Pooja
    Sharma, Khushbu
    Pal, Pratibha
    Kumar, Manoj
    Ichikawa, Takayuki
    Jain, Ankur
    RSC ADVANCES, 2019, 9 (23) : 13077 - 13081
  • [48] Diffusion kinetics of water in graphite anodes for Li-ion batteries
    Eser, Jochen C.
    Deichmann, Birthe
    Wirsching, Tobias
    Merklein, Lisa
    Mueller, Marcus
    Scharfer, Philip
    Schabel, Wilhelm
    DRYING TECHNOLOGY, 2022, 40 (06) : 1130 - 1145
  • [49] Lithium Argyrodite Sulfide Electrolytes with High Ionic Conductivity and Air Stability for All-Solid-State Li-Ion Batteries
    Lee, Yongheum
    Jeong, Jiwon
    Lee, Ho Jun
    Kim, Mingony
    Han, Daseul
    Kim, Hyoungchul
    Yuk, Jong Min
    Nam, Kyung-Wan
    Chung, Kyung Yoon
    Jung, Hun-Gi
    Yu, Seungho
    ACS ENERGY LETTERS, 2022, 7 (01): : 171 - 179
  • [50] Halide-type Li-ion conductors: Future options for high-voltage all-solid-state batteries
    Huang, Jheng-Yi
    Iputera, Kevin
    Jena, Anirudha
    Tong, Zizheng
    Wei, Da-Hua
    Hu, Shu-Fen
    Liu, Ru-Shi
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2022, 69 (08) : 1233 - 1241