Recent advances in Sb-based anodes for Li/Na/K-ion batteries and all-solid-state Li-ion batteries

被引:0
|
作者
Yoon, Jeong-Myeong [1 ,2 ]
Kim, Deok-Gyu [1 ,2 ]
Kim, Do-Hyeon [1 ,2 ]
Lee, Young-Han [1 ,2 ]
Park, Cheol-Min [1 ,2 ]
机构
[1] Kumoh Natl Inst Technol, Sch Mat Sci & Engn, 61 Daehak Ro, Gumi 39177, Gyeongbuk, South Korea
[2] Kumoh Natl Inst Technol, Dept Energy Engn Convergence, 61 Daehak Ro, Gumi 39177, Gyeongbuk, South Korea
来源
ENERGY MATERIALS | 2024年 / 4卷 / 06期
关键词
Battery; Li-ion battery; Na-ion battery; Sb-based anode; K-ion battery; all-solid-state battery; anode; HIGH-RATE CAPABILITY; HIGH-PERFORMANCE; LITHIUM-ION; CARBON NANOSHEETS; FACILE SYNTHESIS; ELECTROCHEMICAL CHARACTERISTICS; ELECTROLYTE INTERPHASE; COMPOSITE ANODES; ANTIMONY; NANOPARTICLES;
D O I
10.20517/energymater.2023.146
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In recent decades, lithium-ion batteries (LIBs) have emerged as a primary focus in the energy-storage field owing to their superior energy and power densities. However, concerns regarding the depletion of non-abundant lithium resources have prompted the exploration and development of emerging energy-storage technologies, such as sodium- (SIBs) and potassium-ion batteries (PIBs). In addition, all-solid-state LIBs (ASSLIBs) have been developed to address the issues of flammability and explosiveness associated with liquid electrolytes. Among the various alloy-based anodes, antimony (Sb) anodes exhibit high energy densities owing to their high theoretical volumetric capacities that are attributable to their high densities. However, Sb anodes exhibit poor cyclabilities owing to excessive volume changes during cycling. To mitigate this issue, researchers have investigated the use of diverse solutions, including solid electrolyte interface control, structural control, and composite/alloy formation. Herein, we review and summarize Sb-based anode materials for LIBs, SIBs, PIBs, and ASSLIBs developed over the past five years (2018-present), focusing on their reaction mechanisms and multiple approaches used to achieve optimal electrochemical performance. We anticipate that this review will provide a comprehensive database of Sb-based anodes for LIBs, SIBs, PIBs, and ASSLIBs, thereby advancing relevant studies in the energy-storage-systems field.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Electrochemical mechanism of Li insertion/extraction in ZnS and ZnS/C anodes for Li-ion batteries
    Park, Ah-Ram
    Jeon, Ki-Joon
    Park, Cheol-Min
    ELECTROCHIMICA ACTA, 2018, 265 : 107 - 114
  • [32] Model Ge microstructures as anodes for Li-ion batteries
    Long, Brandon R.
    Goldman, Jason L.
    Nuzzo, Ralph G.
    Gewirth, Andrew A.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2013, 17 (12) : 3015 - 3020
  • [33] An advanced all-solid-state Li-ion battery model
    Raijmakers, L. H. J.
    Danilov, D. L.
    Eichel, R-A.
    Notten, P. H. L.
    ELECTROCHIMICA ACTA, 2020, 330
  • [34] Diagnosis of failure modes for all-solid-state Li-ion batteries enabled by three-electrode cells
    Nam, Young Jin
    Park, Kern Ho
    Oh, Dae Yang
    An, Woo Hyun
    Jung, Yoon Seok
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (30) : 14867 - 14875
  • [35] Recent progress in conversion reaction metal oxide anodes for Li-ion batteries
    Cao, Kangzhe
    Jin, Ting
    Yang, Li
    Jiao, Lifang
    MATERIALS CHEMISTRY FRONTIERS, 2017, 1 (11) : 2213 - 2242
  • [36] Towards high-voltage Li-ion batteries: Reversible cycling of graphite anodes and Li-ion batteries in adiponitrile-based electrolytes
    Farhat, Douaa
    Maibach, Julia
    Eriksson, Henrik
    Edstrom, Kristina
    Lemordant, Daniel
    Ghamouss, Fouad
    ELECTROCHIMICA ACTA, 2018, 281 : 299 - 311
  • [37] Electrochemical performance of rod-like Sb-C composite as anodes for Li-ion and Na-ion batteries
    Fan, Long
    Zhang, Jingjing
    Cui, Jianhua
    Zhu, Yongchun
    Liang, Jianwen
    Wang, Lili
    Qian, Yitai
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (07) : 3276 - 3280
  • [38] Chromium nitride as a stable cathode current collector for all-solid-state thin film Li-ion batteries
    Filippin, Alejandro N.
    Rawlence, Michael
    Wackerlin, Aneliia
    Feurer, Thomas
    Zund, Tanja
    Kravchyk, Kostiantyn
    Kovalenko, Maksym V.
    Romanyuk, Yaroslav E.
    Tiwari, Ayodhya N.
    Buecheler, Stephan
    RSC ADVANCES, 2017, 7 (43): : 26960 - 26967
  • [39] Novel tin oxide-based anodes for Li-ion batteries
    Belliard, F
    Connor, PA
    Irvine, JTS
    SOLID STATE IONICS, 2000, 135 (1-4) : 163 - 167
  • [40] A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries
    Edström, K
    Herstedt, M
    Abraham, DP
    JOURNAL OF POWER SOURCES, 2006, 153 (02) : 380 - 384