Recent advances in Sb-based anodes for Li/Na/K-ion batteries and all-solid-state Li-ion batteries

被引:0
|
作者
Yoon, Jeong-Myeong [1 ,2 ]
Kim, Deok-Gyu [1 ,2 ]
Kim, Do-Hyeon [1 ,2 ]
Lee, Young-Han [1 ,2 ]
Park, Cheol-Min [1 ,2 ]
机构
[1] Kumoh Natl Inst Technol, Sch Mat Sci & Engn, 61 Daehak Ro, Gumi 39177, Gyeongbuk, South Korea
[2] Kumoh Natl Inst Technol, Dept Energy Engn Convergence, 61 Daehak Ro, Gumi 39177, Gyeongbuk, South Korea
来源
ENERGY MATERIALS | 2024年 / 4卷 / 06期
关键词
Battery; Li-ion battery; Na-ion battery; Sb-based anode; K-ion battery; all-solid-state battery; anode; HIGH-RATE CAPABILITY; HIGH-PERFORMANCE; LITHIUM-ION; CARBON NANOSHEETS; FACILE SYNTHESIS; ELECTROCHEMICAL CHARACTERISTICS; ELECTROLYTE INTERPHASE; COMPOSITE ANODES; ANTIMONY; NANOPARTICLES;
D O I
10.20517/energymater.2023.146
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In recent decades, lithium-ion batteries (LIBs) have emerged as a primary focus in the energy-storage field owing to their superior energy and power densities. However, concerns regarding the depletion of non-abundant lithium resources have prompted the exploration and development of emerging energy-storage technologies, such as sodium- (SIBs) and potassium-ion batteries (PIBs). In addition, all-solid-state LIBs (ASSLIBs) have been developed to address the issues of flammability and explosiveness associated with liquid electrolytes. Among the various alloy-based anodes, antimony (Sb) anodes exhibit high energy densities owing to their high theoretical volumetric capacities that are attributable to their high densities. However, Sb anodes exhibit poor cyclabilities owing to excessive volume changes during cycling. To mitigate this issue, researchers have investigated the use of diverse solutions, including solid electrolyte interface control, structural control, and composite/alloy formation. Herein, we review and summarize Sb-based anode materials for LIBs, SIBs, PIBs, and ASSLIBs developed over the past five years (2018-present), focusing on their reaction mechanisms and multiple approaches used to achieve optimal electrochemical performance. We anticipate that this review will provide a comprehensive database of Sb-based anodes for LIBs, SIBs, PIBs, and ASSLIBs, thereby advancing relevant studies in the energy-storage-systems field.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Development of All-Solid-State Li-Ion Batteries: From Key Technical Areas to Commercial Use
    Bubulinca, Constantin
    Kazantseva, Natalia E.
    Pechancova, Viera
    Joseph, Nikhitha
    Fei, Haojie
    Venher, Mariana
    Ivanichenko, Anna
    Saha, Petr
    BATTERIES-BASEL, 2023, 9 (03):
  • [22] Perspectives on Iron Oxide-Based Materials with Carbon as Anodes for Li- and K-Ion Batteries
    Valvo, Mario
    Floraki, Christina
    Paillard, Elie
    Edstrom, Kristina
    Vernardou, Dimitra
    NANOMATERIALS, 2022, 12 (09)
  • [23] High-Rate Blended Cathode with Mixed Morphology for All-Solid-State Li-ion Batteries
    Heo, Kookjin
    Im, Jehong
    Lee, Jeong-Seon
    Jo, Jeonggeon
    Kim, Seokhun
    Kim, Jaekook
    Lim, Jinsub
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2020, 11 (03) : 282 - 290
  • [24] Si-Based Anodes: Advances and Challenges in Li-Ion Batteries for Enhanced Stability
    Zhao, Hongshun
    Li, Jianbin
    Zhao, Qian
    Huang, Xiaobing
    Jia, Shuyong
    Ma, Jianmin
    Ren, Yurong
    ELECTROCHEMICAL ENERGY REVIEWS, 2024, 7 (01)
  • [25] Recent Advances in Filler Engineering of Polymer Electrolytes for Solid-State Li-Ion Batteries: A Review
    Ye, Fei
    Liao, Kaiming
    Ran, Ran
    Shao, Zongping
    ENERGY & FUELS, 2020, 34 (08) : 9189 - 9207
  • [26] Metal Hydrides with In Situ Built Electron/Ion Dual-Conductive Framework for Stable All-Solid-State Li-Ion Batteries
    Gao, Panyu
    Ju, Shunlong
    Liu, Zipeng
    Xia, Guanglin
    Sun, Dalin
    Yu, Xuebin
    ACS NANO, 2022, 16 (05) : 8040 - 8050
  • [27] Recent Advancements in Li-ion Batteries Electrolytes: A Review
    Mohamed, Lamiaa Z.
    Abdelfatah, Aliaa
    Selim, Ahmed M.
    Elhamid, Abd Elhamid M. Abd
    Reda, Y.
    El-Raghy, S. M.
    Abdel-Karim, R.
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2024, 62 (05) : 397 - 411
  • [28] Recent progress on the recycling technology of Li-ion batteries
    Wang, Yuqing
    An, Ning
    Wen, Lei
    Wang, Lei
    Jiang, Xiaotong
    Hou, Feng
    Yin, Yuxin
    Liang, Ji
    JOURNAL OF ENERGY CHEMISTRY, 2021, 55 : 391 - 419
  • [29] Chemically Prelithiated Graphene for Anodes of Li-Ion Batteries
    Jang, Jaewon
    Ki, Hangil
    Kang, Yesol
    Son, Myungwoo
    Auxilia, Francis Malar
    Seo, Hun
    Kim, Il-Hwan
    Kim, Kwang-Heon
    Park, Ki-Hoon
    Kim, Yoongon
    Kim, Won Bae
    Ham, Moon-Ho
    Kim, In S.
    ENERGY & FUELS, 2020, 34 (10) : 13048 - 13055
  • [30] Red phosphorus composite anodes for Li-ion batteries
    Li Wang
    Zhaohui Zhou
    Jiangang Li
    Xiangming He
    Ionics, 2018, 24 : 303 - 308