Recent advances in Sb-based anodes for Li/Na/K-ion batteries and all-solid-state Li-ion batteries

被引:0
|
作者
Yoon, Jeong-Myeong [1 ,2 ]
Kim, Deok-Gyu [1 ,2 ]
Kim, Do-Hyeon [1 ,2 ]
Lee, Young-Han [1 ,2 ]
Park, Cheol-Min [1 ,2 ]
机构
[1] Kumoh Natl Inst Technol, Sch Mat Sci & Engn, 61 Daehak Ro, Gumi 39177, Gyeongbuk, South Korea
[2] Kumoh Natl Inst Technol, Dept Energy Engn Convergence, 61 Daehak Ro, Gumi 39177, Gyeongbuk, South Korea
来源
ENERGY MATERIALS | 2024年 / 4卷 / 06期
关键词
Battery; Li-ion battery; Na-ion battery; Sb-based anode; K-ion battery; all-solid-state battery; anode; HIGH-RATE CAPABILITY; HIGH-PERFORMANCE; LITHIUM-ION; CARBON NANOSHEETS; FACILE SYNTHESIS; ELECTROCHEMICAL CHARACTERISTICS; ELECTROLYTE INTERPHASE; COMPOSITE ANODES; ANTIMONY; NANOPARTICLES;
D O I
10.20517/energymater.2023.146
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In recent decades, lithium-ion batteries (LIBs) have emerged as a primary focus in the energy-storage field owing to their superior energy and power densities. However, concerns regarding the depletion of non-abundant lithium resources have prompted the exploration and development of emerging energy-storage technologies, such as sodium- (SIBs) and potassium-ion batteries (PIBs). In addition, all-solid-state LIBs (ASSLIBs) have been developed to address the issues of flammability and explosiveness associated with liquid electrolytes. Among the various alloy-based anodes, antimony (Sb) anodes exhibit high energy densities owing to their high theoretical volumetric capacities that are attributable to their high densities. However, Sb anodes exhibit poor cyclabilities owing to excessive volume changes during cycling. To mitigate this issue, researchers have investigated the use of diverse solutions, including solid electrolyte interface control, structural control, and composite/alloy formation. Herein, we review and summarize Sb-based anode materials for LIBs, SIBs, PIBs, and ASSLIBs developed over the past five years (2018-present), focusing on their reaction mechanisms and multiple approaches used to achieve optimal electrochemical performance. We anticipate that this review will provide a comprehensive database of Sb-based anodes for LIBs, SIBs, PIBs, and ASSLIBs, thereby advancing relevant studies in the energy-storage-systems field.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Modeling All-Solid-State Li-Ion Batteries
    Danilov, D.
    Niessen, R. A. H.
    Notten, P. H. L.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) : A215 - A222
  • [2] Development of Si-Based Anodes for All-Solid-State Li-Ion Batteries
    Zhao, Xuyang
    Rong, Yunpeng
    Duan, Yi
    Wu, Yanlong
    He, Deyu
    Qi, Xiaopeng
    Wang, Jiantao
    COATINGS, 2024, 14 (05)
  • [3] Electrospinning techniques for Li, Na and K-ion batteries
    Ilango, P. Robert
    Peng, Shengjie
    CURRENT OPINION IN ELECTROCHEMISTRY, 2019, 18 : 106 - 112
  • [4] A Comparative Review of Models for All-Solid-State Li-Ion Batteries
    Yildiz, Erkin
    Serpelloni, Mattia
    Salvadori, Alberto
    Cabras, Luigi
    BATTERIES-BASEL, 2024, 10 (05):
  • [5] Blended cathode materials for all-solid-state Li-ion batteries
    Lee, Jeong-Seon
    Heo, Kookjin
    Kim, Ho-Sung
    Kim, Min-Young
    Kim, Jaekook
    Kang, Sung-Won
    Lim, Jinsub
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 781 : 553 - 559
  • [6] Recent Progress of Alloy-Based All-Solid-State Li-Ion Battery Anodes
    Yoon, Jeong-Myeong
    Park, Cheol-Min
    CORROSION SCIENCE AND TECHNOLOGY-KOREA, 2023, 22 (06): : 466 - 477
  • [7] Hard Carbon Anodes: Fundamental Understanding and Commercial Perspectives for Na-Ion Batteries beyond Li-Ion and K-Ion Counterparts
    Zhao, Ling-Fei
    Hu, Zhe
    Lai, Wei-Hong
    Tao, Ying
    Peng, Jian
    Miao, Zong-Cheng
    Wang, Yun-Xiao
    Chou, Shu-Lei
    Liu, Hua-Kun
    Dou, Shi-Xue
    ADVANCED ENERGY MATERIALS, 2021, 11 (01)
  • [8] Electrodeposition of Sb/CNT composite films as anodes for Li- and Na-ion batteries
    Schulze, Maxwell C.
    Belson, Ryan M.
    Kraynak, Leslie A.
    Prieto, Amy L.
    ENERGY STORAGE MATERIALS, 2020, 25 : 572 - 584
  • [9] Iron-based cathodes/anodes for Li-ion and post Li-ion batteries
    Okada, S
    Yamaki, J
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2004, 10 (07) : 1104 - 1113
  • [10] High Li-ion conductive composite polymer electrolytes for all-solid-state Li-metal batteries
    Zhou, Qiongyu
    Li, Qinghui
    Liu, Songli
    Yin, Xin
    Huang, Bing
    Sheng, Minqi
    JOURNAL OF POWER SOURCES, 2021, 482