Bimetal Oxides Anchored on Carbon Nanotubes/Nanosheets as High-Efficiency and Durable Bifunctional Oxygen Catalyst for Advanced Zn-Air Battery: Experiments and DFT Calculations

被引:2
|
作者
Ruan, Qi-Dong [1 ]
Zhao, Yun-Cai [2 ]
Feng, Rui [1 ]
Ul Haq, Mahmood [1 ]
Zhang, Lu [1 ]
Feng, Jiu-Ju [1 ]
Gao, Yi-Jing [2 ]
Wang, Ai-Jun [1 ]
机构
[1] Zhejiang Normal Univ, Coll Chem & Mat Sci, Coll Geog & Environm Sci, Key Lab Minist Educ Adv Catalysis Mat, Jinhua 321004, Peoples R China
[2] Zhejiang Normal Univ, Inst Adv Fluorine Containing Mat, Zhejiang Engn Lab Green Synth & Applicat Fluorine, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
bifunctional catalyst; bimetal oxides; carbon nanotubes/nanosheets; two-step pyrolysis strategy; Zn-air battery; REDUCTION REACTION; ELECTROCATALYST; PERFORMANCE; NANOPARTICLES; EVOLUTION; NANOSHEETS; NANOFIBER; NITROGEN; SPHERES; IRON;
D O I
10.1002/smll.202402104
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To meet increasing requirement for innovative energy storage and conversion technology, it is urgent to prepare effective, affordable, and long-term stable oxygen electrocatalysts to replace precious metal-based counterparts. Herein, a two-step pyrolysis strategy is developed for controlled synthesis of Fe2O3 and Mn3O4 anchored on carbon nanotubes/nanosheets (Fe2O3-Mn3O4-CNTs/NSs). The typical catalyst has a high half-wave potential (E1/2 = 0.87 V) for oxygen reduction reaction (ORR), accompanied with a smaller overpotential (eta 10 = 290 mV) for oxygen evolution reaction (OER), showing substantial improvement in the ORR and OER performances. As well, density functional theory calculations are performed to illustrate the catalytic mechanism, where the in situ generated Fe2O3 directly correlates to the reduced energy barrier, rather than Mn3O4. The Fe2O3-Mn3O4-CNTs/NSs-based Zn-air battery exhibits a high-power density (153 mW cm-2) and satisfyingly long durability (1650 charge/discharge cycles/550 h). This work provides a new reference for preparation of highly reversible oxygen conversion catalysts. Fe2O3-Mn3O4-CNTs/NSs are fabricated by a facile pyrolysis method. The specific structure of carbon nanotubes and carbon nanosheets provide large ECSA and expose more active sites. The catalyst shows excellent oxygen conversion efficiency and durability in Zn-air battery. image
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Coupling hollow Fe3O4 nanoparticles with oxygen vacancy on mesoporous carbon as a high-efficiency ORR electrocatalyst for Zn-air battery
    Deng, Yijie
    Tian, Xinlong
    Shen, Guohong
    Gao, Yang
    Lin, Chenxiao
    Ling, Liming
    Cheng, Faliang
    Liao, Shijun
    Zhang, Shiguo
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 567 : 410 - 418
  • [22] High-efficiency oxygen electrocatalyst for Zn-air batteries on CoMn alloy encapsulated in N-doped carbon architectures
    Zhou, Wenshu
    Liu, Yanyan
    Wu, Dichao
    Liu, Shuling
    Zhang, Pengxiang
    Zhang, Gaoyue
    Sun, Kang
    Jiang, Jianchun
    APL MATERIALS, 2023, 11 (06)
  • [23] Boosting Zn-air battery performance: Fe single-atom anchored on F, N co-doped carbon nanosheets for efficient oxygen reduction
    Alhakemy, Ahmed Zaki
    Wang, Genxiang
    Chen, Kai
    Hassan, Ahmed E.
    Wen, Zhenhai
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [24] Boosting Zn-air battery performance: Fe single-atom anchored on F, N co-doped carbon nanosheets for efficient oxygen reduction
    Wang, Genxiang (gxwang@ujs.edu.cn); Wen, Zhenhai (wen@fjirsm.ac.cn), 1600, Elsevier Ltd (1010):
  • [25] Co-N-Doped Directional Multichannel PAN/CA-Based Electrospun Carbon Nanofibers as High-Efficiency Bifunctional Oxygen Electrocatalysts for Zn-Air Batteries
    Gao, Kun
    Shen, Mengxia
    Duan, Chao
    Xiong, Chuanyin
    Dai, Lei
    Zhao, Wei
    Lu, Wanli
    Ding, Shujiang
    Ni, Yonghao
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (50) : 17068 - 17077
  • [26] Facile synthesis of ZnS decorated N, S co-doped carbon polyhedron as high efficiency oxygen reduction reaction catalyst for Zn-air battery
    Li, Yanqiang
    Wang, Chao
    Cui, Ming
    Chen, Siru
    Gao, Liguo
    Liu, Anmin
    Ma, Tingli
    APPLIED SURFACE SCIENCE, 2020, 509 (509)
  • [27] Facile in situ coupling CoFe/Co nanoparticles and N-doped carbon nanotubes/graphitic nanosheets as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries
    Zhu, Ping
    Gao, Jingxia
    Liu, Sa
    JOURNAL OF POWER SOURCES, 2020, 449
  • [28] Coexisting Fe single atoms and nanoparticles on hierarchically porous carbon for high-efficiency oxygen reduction reaction and Zn-air batteries
    Lu, Xiangyu
    Li, Yaqiang
    Dong, Derui
    Wan, Yongbiao
    Li, Ruopeng
    Xiao, Lihui
    Wang, Dan
    Liu, Lilai
    Wang, Guangzhao
    Zhang, Jinqiu
    An, Maozhong
    Yang, Peixia
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 653 : 654 - 663
  • [29] Co, N co-doped carbon nanosheets coupled with NiCo2O4 as an efficient bifunctional oxygen catalyst for Zn-air batteries
    Deng, Ximing
    Mi, Yajun
    Liu, Yuheng
    Sun, Yan
    Cheng, Yangshuai
    Wang, Wei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (36) : 13452 - 13459
  • [30] Hierarchical Porous Carbon with N/S Codoped Bimetal as a High-Efficiency Oxygen Reduction Catalyst for Rechargeable Zinc-Air Batteries
    Bao, Lishi
    Bao, Chenguang
    Sun, Qifeng
    Zou, Jiaxin
    Liu, Hongbo
    Huichen
    ENERGY & FUELS, 2023, 37 (23) : 19137 - 19146