Advancements and Future Prospects in Molecular Targeted and siRNA Therapies for Chronic Myeloid Leukemia

被引:0
作者
Vysochinskaya, Vera [1 ,2 ]
Dovbysh, Olesya [1 ]
Gorshkov, Andrey [2 ,3 ]
Brodskaia, Alexandra [1 ,2 ]
Dubina, Michael [4 ]
Vasin, Andrey [1 ,2 ]
Zabrodskaya, Yana [1 ,2 ]
机构
[1] Peter Great St Petersburg Polytech Univ, Inst Biomed Syst & Biotechnol, 29 Ulitsa Polytech Skaya, St Petersburg 194064, Russia
[2] Russian Minist Hlth, Smorodintsev Res Inst Influenza, 15-17 Ulitsa Prof Popova, St Petersburg 197376, Russia
[3] Almazov Natl Med Res Ctr, Akkuratova Str 2, St Petersburg 197341, Russia
[4] Russian Acad Sci, 14 Leninskiy Pr, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
chronic myeloid leukemia; BCR-ABL1; tyrosine kinase inhibitors; small interfering RNA; CHRONIC MYELOGENOUS LEUKEMIA; SMALL INTERFERING RNA; TYROSINE KINASE INHIBITORS; TREATMENT-FREE REMISSION; BCR-ABL TRANSCRIPTS; CELL-LINE; PHILADELPHIA-CHROMOSOME; GENE-EXPRESSION; BETA-CATENIN; IMATINIB MESYLATE;
D O I
10.3390/biom14060644
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chronic myeloid leukemia (CML) is an oncological myeloproliferative disorder that accounts for 15 to 20% of all adult leukemia cases. The molecular basis of this disease lies in the formation of a chimeric oncogene BCR-ABL1. The protein product of this gene, p210 BCR-ABL1, exhibits abnormally high constitutive tyrosine kinase activity. Over recent decades, several targeted tyrosine kinase inhibitors (TKIs) directed against BCR-ABL1 have been developed and introduced into clinical practice. These inhibitors suppress BCR-ABL1 activity through various mechanisms. Furthermore, the advent of RNA interference technology has enabled the highly specific inhibition of BCR-ABL1 transcript expression using small interfering RNA (siRNA). This experimental evidence opens avenues for the development of a novel therapeutic strategy for CML, termed siRNA therapy. The review delves into molecular genetic mechanisms underlying the pathogenesis of CML, challenges in CML therapy, potential molecular targets for drug development, and the latest results from the application of siRNAs in in vitro and in vivo CML models.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Chronic myeloid leukemia: "Archetype" of the impact of targeted therapies
    Nasr, R.
    Bazarbachi, A.
    PATHOLOGIE BIOLOGIE, 2012, 60 (04): : 239 - 245
  • [2] Cardiovascular Complications of Targeted Therapies for Chronic Myeloid Leukemia
    Damrongwatanasuk R.
    Fradley M.G.
    Current Treatment Options in Cardiovascular Medicine, 2017, 19 (4)
  • [3] Chronic Myeloid Leukemia: Modern therapies, current challenges and future directions
    Osman, Afaf E. G.
    Deininger, Michael W.
    BLOOD REVIEWS, 2021, 49
  • [4] Emerging Therapies in Chronic Myeloid Leukemia
    Gora-Tybor, J.
    CURRENT CANCER DRUG TARGETS, 2012, 12 (05) : 458 - 470
  • [5] Chronic myeloid leukemia stem cells and molecular target therapies for overcoming resistance and disease persistence
    Inoue, Ai
    Kobayashi, Chiharu I.
    Shinohara, Haruka
    Miyamoto, Kenichi
    Yamauchi, Nobuhiko
    Yuda, Junichiro
    Akao, Yukihiro
    Minami, Yosuke
    INTERNATIONAL JOURNAL OF HEMATOLOGY, 2018, 108 (04) : 365 - 370
  • [6] Prognosis and Molecular Monitoring in Chronic Myeloid Leukemia
    Egan, Daniel
    Radich, Jerald
    CLINICAL LYMPHOMA MYELOMA & LEUKEMIA, 2015, 15 : S109 - S113
  • [7] Update on the management of chronic myeloid leukemia: current best practice and future directions
    Nee, Aisling
    Lipton, Jeffrey H.
    EXPERT OPINION ON ORPHAN DRUGS, 2019, 7 (04): : 157 - 169
  • [8] Chronic myeloid leukemia: Relevance of cytogenetic and molecular assays
    Bennour, Ayda
    Saad, Ali
    Sennana, Halima
    CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2016, 97 : 263 - 274
  • [9] Therapeutic strategy for chronic myeloid leukemia: possibilities and prospects
    Turkina, A. G.
    Chelysheva, E. Yu.
    TERAPEVTICHESKII ARKHIV, 2013, 85 (07) : 4 - +
  • [10] Targeted Drugs in Chronic Myeloid Leukemia
    Gora-Tybor, Joanna
    Robak, Tadeusz
    CURRENT MEDICINAL CHEMISTRY, 2008, 15 (29) : 3036 - 3051