Intratumoral and Peritumoral Multiparametric MRI-Based Radiomics Signature for Preoperative Prediction of Ki-67 Proliferation Status in Glioblastoma: A Two-Center Study

被引:5
作者
Zhu, Xuechao [1 ]
He, Yulin [2 ]
Wang, Mengting [2 ]
Shu, Yuqin [1 ]
Lai, Xunfu [2 ]
Gan, Cuihua [1 ]
Liu, Lan [1 ]
机构
[1] Jiangxi Tumor Hosp, Dept Radiol, Nanchang, Jiangxi, Peoples R China
[2] Nanchang Univ, Affiliated Hosp 1, Dept Radiol, Nanchang, Jiangxi, Peoples R China
关键词
Glioblastoma; Ki-67; Radiomics; Multiparametric magnetic resonance imaging; PROGNOSTIC-SIGNIFICANCE; LABELING INDEX; FEATURES; EPIDEMIOLOGY; EXPRESSION; CARCINOMA; PROTEIN; GROWTH; IMAGES; ZONE;
D O I
10.1016/j.acra.2023.09.010
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: To assess the predictive ability of intratumoral and peritumoral multiparametric magnetic resonance imaging (MRI)-based radiomics signature (RS) for preoperative prediction of Ki-67 proliferation status in glioblastoma. Materials and Methods: A total of 205 patients with glioblastoma at two institutions were retrospectively analyzed. Data from institution 1 ( n = 158) were used to develop the predictive model, and as an internal test dataset, data from institution 2 ( n = 47) constitute the external test dataset. Feature selection was performed using spearman correlation coefficient, univariate ranking method, and the least absolute shrinkage and selection operator algorithm. RSs were established using a logistic regression algorithm. The predictive performance of the RSs was assessed using calibration curve, decision curve analysis (DCA), and area under the curve (AUC). Results: In the RSs based on single-parametric (contrast-enhanced T1-weighted image, T2-weighted image, or apparent diffusion coefficient maps), the AUCs of intratumoral, peritumoral, and combined area (intratumoral and peritumoral) were 0.60-0.67, with no significant difference among them. The RSs that using multiparametric features (integrating the previously mentioned three sequences) showed improved AUC compared to the single-parametric RSs; AUC reached 0.75-0.89. Among them, the multiparametric RS based on radiomics features of the combined area (Multi-Com) exhibited the highest performance, with an internal test dataset AUC of 0.89 (95% confidence interval (CI) 0.75-1.00) and an external test dataset AUC of 0.88 (95% CI 0.78-0.97). The calibration curve and DCA display RS (Multi-Com) have good calibration ability and clinical applicability. Conclusion: The multiparametric MRI-based RS combining intratumoral and peritumoral features can serve as a noninvasive and effective tool for preoperative assessment of Ki-67 proliferation status in glioblastoma.
引用
收藏
页码:1560 / 1571
页数:12
相关论文
共 45 条
[1]   Radiomics Analysis on FLT-PET/MRI for Characterization of Early Treatment Response in Renal Cell Carcinoma: A Proof-of-Concept Study [J].
Antunes, Jacob ;
Viswanath, Satish ;
Rusu, Mirabela ;
Valls, Laia ;
Hoimes, Christopher ;
Avril, Norbert ;
Madabhushi, Anant .
TRANSLATIONAL ONCOLOGY, 2016, 9 (02) :155-162
[2]   Technical Note: Virtual phantom analyses for preprocessing evaluation and detection of a robust feature set for MRI-radiomics of the brain [J].
Bologna, Marco ;
Corino, Valentina ;
Mainardi, Luca .
MEDICAL PHYSICS, 2019, 46 (11) :5116-5123
[3]   Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics [J].
Carre, Alexandre ;
Klausner, Guillaume ;
Edjlali, Myriam ;
Lerousseau, Marvin ;
Briend-Diop, Jade ;
Sun, Roger ;
Ammari, Samy ;
Reuze, Sylvain ;
Andres, Emilie Alvarez ;
Estienne, Theo ;
Niyoteka, Stephane ;
Battistella, Enzo ;
Vakalopoulou, Maria ;
Dhermain, Frederic ;
Paragios, Nikos ;
Deutsch, Eric ;
Oppenheim, Catherine ;
Pallud, Johan ;
Robert, Charlotte .
SCIENTIFIC REPORTS, 2020, 10 (01)
[4]  
Chen Wen-Jie, 2015, Asian Pac J Cancer Prev, V16, P411
[5]   The predictive value of Ki-67 before neoadjuvant chemotherapy for breast cancer: a systematic review and meta-analysis [J].
Chen, Xianyu ;
He, Chao ;
Han, Dongdong ;
Zhou, Meirong ;
Wang, Quan ;
Tian, Jinhui ;
Li, Lun ;
Xu, Feng ;
Zhou, Enxiang ;
Yang, Kehu .
FUTURE ONCOLOGY, 2017, 13 (09) :843-857
[6]   Empirical Evaluation of Cross-Site Reproducibility in Radiomic Features for Characterizing Prostate MRI [J].
Chirra, Prathyush ;
Leo, Patrick ;
Yim, Michael ;
Bloch, B. Nicolas ;
Rastinehad, Ardeshir R. ;
Purysko, Andrei ;
Rosen, Mark ;
Madabhushi, Anant ;
Viswanath, Satish .
MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
[7]   Diffuse glioma growth: a guerilla war [J].
Claes, An ;
Idema, Albert J. ;
Wesseling, Pieter .
ACTA NEUROPATHOLOGICA, 2007, 114 (05) :443-458
[8]   Evaluating the prognostic potential of the Ki67 proliferation index and tumour-infiltrating lymphocytes in olfactory neuroblastoma [J].
Classe, Marion ;
Burgess, Alice ;
El Zein, Sophie ;
Wassef, Michel ;
Herman, Philippe ;
Mortuaire, Geoffrey ;
Leroy, Xavier ;
Malouf, Gabriel G. ;
Verillaud, Benjamin .
HISTOPATHOLOGY, 2019, 75 (06) :853-864
[9]   Element distribution is altered in a zone surrounding human glioblastoma multiforme [J].
Dehnhardt, Markus ;
Zoriy, Myroslav V. ;
Khan, Zahidul ;
Reifenberger, Guido ;
Ekstrom, Tomas J. ;
Becker, J. Sabine ;
Zilles, Karl ;
Bauer, Andreas .
JOURNAL OF TRACE ELEMENTS IN MEDICINE AND BIOLOGY, 2008, 22 (01) :17-23
[10]   An initial study on the predictive value using multiple MRI characteristics for Ki-67 labeling index in glioma [J].
Du, Ningfang ;
Shu, Weiquan ;
Li, Kefeng ;
Deng, Yao ;
Xu, Xinxin ;
Ye, Yao ;
Tang, Feng ;
Mao, Renling ;
Lin, Guangwu ;
Li, Shihong ;
Fang, Xuhao .
JOURNAL OF TRANSLATIONAL MEDICINE, 2023, 21 (01)