Intratumoral and Peritumoral Multiparametric MRI-Based Radiomics Signature for Preoperative Prediction of Ki-67 Proliferation Status in Glioblastoma: A Two-Center Study

被引:3
|
作者
Zhu, Xuechao [1 ]
He, Yulin [2 ]
Wang, Mengting [2 ]
Shu, Yuqin [1 ]
Lai, Xunfu [2 ]
Gan, Cuihua [1 ]
Liu, Lan [1 ]
机构
[1] Jiangxi Tumor Hosp, Dept Radiol, Nanchang, Jiangxi, Peoples R China
[2] Nanchang Univ, Affiliated Hosp 1, Dept Radiol, Nanchang, Jiangxi, Peoples R China
关键词
Glioblastoma; Ki-67; Radiomics; Multiparametric magnetic resonance imaging; PROGNOSTIC-SIGNIFICANCE; LABELING INDEX; FEATURES; EPIDEMIOLOGY; EXPRESSION; CARCINOMA; PROTEIN; GROWTH; IMAGES; ZONE;
D O I
10.1016/j.acra.2023.09.010
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: To assess the predictive ability of intratumoral and peritumoral multiparametric magnetic resonance imaging (MRI)-based radiomics signature (RS) for preoperative prediction of Ki-67 proliferation status in glioblastoma. Materials and Methods: A total of 205 patients with glioblastoma at two institutions were retrospectively analyzed. Data from institution 1 ( n = 158) were used to develop the predictive model, and as an internal test dataset, data from institution 2 ( n = 47) constitute the external test dataset. Feature selection was performed using spearman correlation coefficient, univariate ranking method, and the least absolute shrinkage and selection operator algorithm. RSs were established using a logistic regression algorithm. The predictive performance of the RSs was assessed using calibration curve, decision curve analysis (DCA), and area under the curve (AUC). Results: In the RSs based on single-parametric (contrast-enhanced T1-weighted image, T2-weighted image, or apparent diffusion coefficient maps), the AUCs of intratumoral, peritumoral, and combined area (intratumoral and peritumoral) were 0.60-0.67, with no significant difference among them. The RSs that using multiparametric features (integrating the previously mentioned three sequences) showed improved AUC compared to the single-parametric RSs; AUC reached 0.75-0.89. Among them, the multiparametric RS based on radiomics features of the combined area (Multi-Com) exhibited the highest performance, with an internal test dataset AUC of 0.89 (95% confidence interval (CI) 0.75-1.00) and an external test dataset AUC of 0.88 (95% CI 0.78-0.97). The calibration curve and DCA display RS (Multi-Com) have good calibration ability and clinical applicability. Conclusion: The multiparametric MRI-based RS combining intratumoral and peritumoral features can serve as a noninvasive and effective tool for preoperative assessment of Ki-67 proliferation status in glioblastoma.
引用
收藏
页码:1560 / 1571
页数:12
相关论文
共 50 条
  • [1] An MRI-based radiomics nomogram for preoperative prediction of Ki-67 index in nasopharyngeal carcinoma: a two-center study
    Wang, Yao
    Zhang, Jing
    Li, Qiyuan
    Sun, Li
    Zheng, Yingmei
    Gao, Chuanping
    Dong, Cheng
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [2] Multi-parametric MRI-based radiomics signature for preoperative prediction of Ki-67 proliferation status in sinonasal malignancies: a two-centre study
    Bi, Shucheng
    Li, Jie
    Wang, Tongyu
    Man, Fengyuan
    Zhang, Peng
    Hou, Feng
    Wang, Hexiang
    Hao, Dapeng
    EUROPEAN RADIOLOGY, 2022, 32 (10) : 6933 - 6942
  • [3] Multi-parametric MRI-based radiomics signature for preoperative prediction of Ki-67 proliferation status in sinonasal malignancies: a two-centre study
    Shucheng Bi
    Jie Li
    Tongyu Wang
    Fengyuan Man
    Peng Zhang
    Feng Hou
    Hexiang Wang
    Dapeng Hao
    European Radiology, 2022, 32 : 6933 - 6942
  • [4] An MRI-based Radiomics Classifier for Preoperative Prediction of Ki-67 Status in Breast Cancer
    Liang, Cuishan
    Cheng, Zixuan
    Huang, Yanqi
    He, Lan
    Chen, Xin
    Ma, Zelan
    Huang, Xiaomei
    Liang, Changhong
    Liu, Zaiyi
    ACADEMIC RADIOLOGY, 2018, 25 (09) : 1111 - 1117
  • [5] Intratumoral and peritumoral MRI-based radiomics prediction of histopathological grade in soft tissue sarcomas: a two-center study
    Liyuan Zhang
    Yang Yang
    Ting Wang
    Xi Chen
    Mingyue Tang
    Junnan Deng
    Zhen Cai
    Wei Cui
    Cancer Imaging, 23
  • [6] Intratumoral and peritumoral MRI-based radiomics prediction of histopathological grade in soft tissue sarcomas: a two-center study
    Zhang, Liyuan
    Yang, Yang
    Wang, Ting
    Chen, Xi
    Tang, Mingyue
    Deng, Junnan
    Cai, Zhen
    Cui, Wei
    CANCER IMAGING, 2023, 23 (01)
  • [7] Multiparametric MRI-based radiomics approach with deep transfer learning for preoperative prediction of Ki-67 status in sinonasal squamous cell carcinoma
    Lin, Naier
    Shi, Yiqian
    Ye, Min
    Wang, Luxi
    Sha, Yan
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [8] MRI-based intratumoral and peritumoral radiomics for preoperative prediction of glioma grade: a multicenter study
    Tan, Rui
    Sui, Chunxiao
    Wang, Chao
    Zhu, Tao
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [9] Multiparametric MRI-based radiomics nomogram for the preoperative prediction of lymph node metastasis in rectal cancer: A two-center study
    Zheng, Yongfei
    Chen, Xu
    Zhang, He
    Ning, Xiaoxiang
    Mao, Yichuan
    Zheng, Hailan
    Dai, Guojiao
    Liu, Binghui
    Zhang, Guohua
    Huang, Danjiang
    EUROPEAN JOURNAL OF RADIOLOGY, 2024, 178
  • [10] Intratumoral and Peritumoral Analysis of Mammography, Tomosynthesis, and Multiparametric MRI for Predicting Ki-67 Level in Breast Cancer: a Radiomics-Based Study
    Jiang, Tao
    Song, Jiangdian
    Wang, Xiaoyu
    Niu, Shuxian
    Zhao, Nannan
    Dong, Yue
    Wang, Xingling
    Luo, Yahong
    Jiang, Xiran
    MOLECULAR IMAGING AND BIOLOGY, 2022, 24 (04) : 550 - 559