Turan numbers of r-graphs on r+1 vertices

被引:0
作者
Sidorenko, Alexander [1 ]
机构
[1] Renyi Inst, Dept Extremal Combinator, Budapest, Hungary
关键词
Turan-type problem; Turan density; Three edge problem; HYPERGRAPHS;
D O I
10.1016/j.jctb.2024.06.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H-k (R) denote an r-uniform hypergraph with k edges and r + 1 vertices, where k <= r + 1 (it is easy to see that such a hypergraph is unique up to isomorphism). The known general bounds on its Turan density are pi(H-k (R)) <= k-2/r for all k >= 3, and pi(H-3 (R)) >= 2(1-r) for k = 3. We prove that pi(H-k (R)) >= (C-k - o (1)) r(-(1+1/k-2)) as r -> infinity. In the case k = 3, we prove pi(H-3 (R)) >= (1.7215 - o(1)) r(-2) as r -> infinity, and pi(H-3 (R)) > r(-2) for all r. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:150 / 160
页数:11
相关论文
共 23 条
[1]   On an extremal hypergraph problem of Brown, Erdos and Sos [J].
Alon, Noga ;
Shapira, Asaf .
COMBINATORICA, 2006, 26 (06) :627-645
[2]   Matricial characterization of tournaments with maximum number of diamonds [J].
Belkouche, Wiam ;
Boussairi, Abderrahim ;
Lakhlifi, Soufiane ;
Zaidi, Mohamed .
DISCRETE MATHEMATICS, 2020, 343 (04)
[3]   Daisies and Other Turan Problems [J].
Bollobas, Bela ;
Leader, Imre ;
Malvenuto, Claudia .
COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (05) :743-747
[4]  
Brown W. G., 1973, NEW DIRECTIONS THEOR, P55
[5]  
Cressie N., 1977, Aust. J. Stat., V19, P132, DOI [/10.1111/j.1467-842X.1977.tb01280.x, DOI 10.1111/J.1467-842X.1977.TB01280.X, 10.1111/j.1467-842X.1977.tb01280.x]
[6]  
de Caen D., 1988, Congr. Numer., V65, P277
[7]   THE LIMIT IN THE (k+2, k)-PROBLEM OF BROWN, ERDÓS AND S<acute accent>OS EXISTS FOR ALL k ≥ 2 [J].
Delcourt, Michelle ;
Postle, Luke .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (05) :1881-1891
[8]   Lower bounds for the Turan densities of daisies [J].
Ellis, David ;
King, Dylan .
ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (04)
[9]  
Florescu L, 2014, Stud. Math. Libr, V71
[10]   AN EXACT RESULT FOR 3-GRAPHS [J].
FRANKL, P ;
FUREDI, Z .
DISCRETE MATHEMATICS, 1984, 50 (2-3) :323-328