A Machine-Learning-Assisted Crystalline Structure Prediction Framework To Accelerate Materials Discovery

被引:5
作者
An, Ran [1 ,2 ]
Xie, Congwei [1 ,2 ]
Chu, Dongdong [1 ,2 ]
Li, Fuming [1 ,2 ]
Pan, Shilie [1 ,2 ]
Yang, Zhihua [1 ,2 ]
机构
[1] Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Res Ctr Crystal Mat,Xinjiang Key Lab Funct Crystal, State Key Lab Funct Mat & Devices Special Environm, Urumqi 830011, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
computational materials discovery; crystal structureprediction; machine learning; first-principles calculations; functional materials; DATABASE;
D O I
10.1021/acsami.4c10477
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Modern crystal structure prediction methods based on structure generation algorithms and first-principles calculations play important roles in the design of new materials. However, the cost of these methods is very expensive because their success mostly relies on the efficient sampling of structures and the accurate evaluation of energies for those sampled structures. Herein, we develop a Machine-learning-Assisted CRYStalline Materials sAmpling sysTem (MAXMAT) aiming to accelerate the prediction of new crystal structures. For a given chemical composition, MAXMAT can generate efficient crystal structures with the help of a Python package for crystal structure generation (PyXtal) and can quickly evaluate the energies of these generated structures using a well-developed machine learning interaction potential model (M3GNET). We have used MAXMAT to perform crystal structure searches for three different chemical systems (TiO2, MgAl2O4, and BaBOF3) to test its accuracy and efficiency. Furthermore, we apply MAXMAT to predict new nonlinear optical materials, suggesting several thermodynamically synthesizable structures with high performance in LiZnGaS3 and CaBOF3 systems.
引用
收藏
页码:36658 / 36666
页数:9
相关论文
共 41 条
[1]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[2]   Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations [J].
Behler, Joerg .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (40) :17930-17955
[3]   New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design [J].
Belsky, A ;
Hellenbrandt, M ;
Karen, VL ;
Luksch, P .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2002, 58 :364-369
[4]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[5]   Finding stable multi-component materials by combining cluster expansion and crystal structure predictions [J].
Carlsson, Adam ;
Rosen, Johanna ;
Dahlqvist, Martin .
NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
[6]   A universal graph deep learning interatomic potential for the periodic table [J].
Chen, Chi ;
Ong, Shyue Ping .
NATURE COMPUTATIONAL SCIENCE, 2022, 2 (11) :718-+
[7]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[8]   Comparing molecules and solids across structural and alchemical space [J].
De, Sandip ;
Bartok, Albert P. ;
Csanyi, Gabor ;
Ceriotti, Michele .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (20) :13754-13769
[9]   FFCASP: A Massively Parallel Crystal Structure Prediction Algorithm [J].
Demir, Samet ;
Tekin, Adem .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (04) :2586-2598
[10]   PyXtal: A Python']Python library for crystal structure generation and symmetry analysis [J].
Fredericks, Scott ;
Parrish, Kevin ;
Sayre, Dean ;
Zhu, Qiang .
COMPUTER PHYSICS COMMUNICATIONS, 2021, 261