Optimal multiple fringe pattern composition by weighted complex amplitude fusion in fringe projection profilometry

被引:0
作者
Geng, Guohua [1 ]
Wang, Tao [1 ]
Xu, Yang [1 ]
Li, Kang [1 ]
机构
[1] Northwest Univ, Sch Informat Sci & Technol, Xian 710127, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH DYNAMIC-RANGE; 3D SHAPE MEASUREMENT; PHASE RETRIEVAL; ALGORITHMS; SATURATION; OBJECTS;
D O I
10.1364/AO.516710
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper presents an optimal multiple fringe pattern composition method for 3D shape measurement of highdynamic-range (HDR) objects using fringe projection profilometry (FPP). With the inverse variance weighting theory, we take the square of the modulation intensities of the fringe pattern images with different intensity levels as the weights to obtain the composited phase of fringe patterns by weighted complex amplitude fusion, which improves the measurement precision of HDR objects. Additionally, we integrate HDR 3D shape measurement and temporal noise reduction into a unified framework by utilizing weighted complex amplitude fusion to completely measure translucent objects with specular reflections. Simulations and experiments demonstrate that our method can achieve higher measurement precision and is resistant to the time-varying ambient light.
引用
收藏
页码:4931 / 4939
页数:9
相关论文
共 50 条
[31]   Decomposition and compensation of fringe harmonic errors by use of their partial orthogonality in phase-shifting fringe projection profilometry [J].
Zhu, Jianli ;
Lin, Shuai ;
Guo, Hongwei .
APPLIED OPTICS, 2024, 63 (30) :7996-8006
[32]   Error-diffusion-kernel parameters for binary pattern in 1-bit fringe projection profilometry [J].
Shan, Shuo ;
Xu, Peng ;
Zhang, Wen ;
Li, Ze ;
Liu, Jintao ;
Wang, Jianhua .
APPLIED OPTICS, 2023, 62 (33) :8882-8893
[33]   Phase unwrapping using binary-encoded fringe pattern for phase shifting projected fringe profilometry [J].
Cheng, Nai-Jeng ;
Chen, Sih-Yue ;
Su, Wei-Hung .
PHOTONIC FIBER AND CRYSTAL DEVICES: ADVANCES IN MATERIALS AND INNOVATIONS IN DEVICE APPLICATIONS X, 2016, 9958
[34]   One shot projected fringe profilometry using a 2D fringe-encoded pattern [J].
Su, Wei-Hung ;
Chen, Sih-Yue .
PHOTONIC FIBER AND CRYSTAL DEVICES: ADVANCES IN MATERIALS AND INNOVATIONS IN DEVICE APPLICATIONS XII, 2018, 10755
[35]   Toward higher-frequency fringe projection profilometry with fewer patterns [J].
Zeng, Jinghui ;
Li, Yucheng ;
Li, Shutao ;
Tan, Mingkui .
OPTICS LETTERS, 2024, 49 (23) :6649-6652
[36]   Synthesize-Then-Evaluate Based Optimal Exposures Selection for High Dynamic Range Fringe Projection Profilometry [J].
Liu, Zhenyu ;
Tang, Peng ;
Sa, Guodong ;
Ge, Junkai ;
Tan, Jianrong .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2024,
[37]   Near-infrared fringe projection profilometry based on deep learning [J].
Wang, Jinglei ;
Li, Yixuan ;
Wang, Mengke ;
Zhang, Yanxin ;
Jia, Zhe ;
Zhang, Yuzhen .
AOPC 2021: NOVEL TECHNOLOGIES AND INSTRUMENTS FOR ASTRONOMICAL MULTI-BAND OBSERVATIONS, 2021, 12069
[38]   A phase retrieval method for fringe projection profilometry based on the phase pyramid [J].
Wu, Qiyang ;
Sun, Junhua .
AOPC 2020: OPTICAL SENSING AND IMAGING TECHNOLOGY, 2020, 11567
[39]   Mask information-based gamma correction in fringe projection profilometry [J].
Song, Huixin ;
Kong, Lingbao .
OPTICS EXPRESS, 2023, 31 (12) :19478-19490
[40]   Systematic Radio Telescope Alignment Using Portable Fringe Projection Profilometry [J].
Berkson, Joel ;
Hyatt, Justin ;
Julicher, Nathan ;
Jeong, Byeongjoon ;
Pimienta, Isaac ;
Ball, Rachel ;
Ellis, Wyatt ;
Voris, Jason ;
Torres-Barajas, Diego ;
Kim, Daewook .
NANOMANUFACTURING AND METROLOGY, 2024, 7 (01)