Asymptotic behavior of solutions of a viscoelastic Shear beam model with no rotary inertia: General and optimal decay results

被引:1
作者
Al-Mahdi, Adel M. [1 ,2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Construct & Bldg Mat, Dhahran 31261, Saudi Arabia
关键词
Timoshenko system; Shear beam models; multiplier method; general and optimal decay; memory; TIMOSHENKO SYSTEM; STABILITY; EQUATIONS; DYNAMICS; RATES;
D O I
10.1515/math-2024-0011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we consider a viscoelastic Shear beam model with no rotary inertia. Specifically, we study - + + * = - + + =. f. f. g f t b.. f. 0, 0,tt x x xx xx x1 () ()() () where the convolution memory function g belongs to a class of L1 0, 8 () functions that satisfies g'( t) = -.(t).(g(t)),. t = 0, where. is a positive nonincreasing differentiable function and. is an increasing and convex function near the origin. Using just this general assumptions on the behavior of g at infinity, we provide optimal and explicit general energy decay rates from which we recover the exponential and polynomial rates when.(s) = sp and p covers the full admissible range [1, 2). Given this degree of generality, our results improve some of earlier related results in the literature.
引用
收藏
页数:15
相关论文
共 31 条
[1]   New decay results for a viscoelastic-type Timoshenko system with infinite memory [J].
Al-Mahdi, Adel M. ;
Al-Gharabli, Mohammad M. ;
Guesmia, Aissa ;
Messaoudi, Salim A. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01)
[2]   Decay estimates for second order evolution equations with memory [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco ;
Sforza, Daniela .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (05) :1342-1372
[3]   Energy decay for damped Shear beam model and new facts related to the classical Timoshenko system [J].
Almeida Junior, D. S. ;
Ramos, A. J. A. ;
Freitas, M. M. .
APPLIED MATHEMATICS LETTERS, 2021, 120
[4]   Issues related to the second spectrum, Ostrogradsky's energy and the stabilization of Timoshenko-Ehrenfest-type systems [J].
Almeida Junior, D. S. ;
Ramos, A. J. A. ;
Soufyane, A. ;
Cardoso, M. L. ;
Santos, M. L. .
ACTA MECHANICA, 2020, 231 (09) :3565-3581
[5]   Asymptotic behavior of weakly dissipative Bresse-Timoshenko system on influence of the second spectrum of frequency [J].
Almeida Junior, D. S. ;
Ramos, A. J. A. ;
Santos, M. L. ;
Gutemberg, L. R. M. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2018, 98 (08) :1320-1333
[6]   Stability to weakly dissipative Timoshenko systems [J].
Almeida Junior, D. S. ;
Santos, M. L. ;
Munoz Rivera, J. E. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (14) :1965-1976
[7]   Stability to 1-D thermoelastic Timoshenko beam acting on shear force [J].
Almeida Junior, Dilberto da S. ;
Santos, M. L. ;
Munoz Rivera, J. E. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1233-1249
[8]   Thermoelastic Timoshenko system free of second spectrum [J].
Apalara, Tijani A. ;
Raposo, Carlos A. ;
Ige, Aminat .
APPLIED MATHEMATICS LETTERS, 2022, 126
[9]   On the decay rates of Timoshenko system with second sound [J].
Apalara, Tijani A. ;
Messaoudi, Salim A. ;
Keddi, Ahmed A. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (10) :2671-2684
[10]  
Arnol'd VladimirIgorevich., 2013, MATH METHODS CLASSIC, V60